Stochastic inclusions with current velocities having decomposable right-hand sides
Journal of computational and engineering mathematics, Tome 5 (2018) no. 2, pp. 34-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

An existence of solution theorem is obtained for stochastic differential inclusions given in terms of the so-called current velocities (symmetric mean derivatives, a direct analogs of ordinary velocity of deterministic systems) and quadratic mean derivatives (giving information on the diffusion coefficient) on the flat $n$-dimensional torus. Right-hand sides in both the current velocity part and the quadratic part are set-valued, lower semi-continuous but not necessarily have convex images. Instead we suppose that they are decomposable.
Keywords: mean derivatives, current velocities, decomposable set-valued mappings, differential inclusions.
@article{JCEM_2018_5_2_a2,
     author = {Yu. E. Gliklikh and A. V. Makarova},
     title = {Stochastic inclusions with current velocities having decomposable right-hand sides},
     journal = {Journal of computational and engineering mathematics},
     pages = {34--43},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a2/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
AU  - A. V. Makarova
TI  - Stochastic inclusions with current velocities having decomposable right-hand sides
JO  - Journal of computational and engineering mathematics
PY  - 2018
SP  - 34
EP  - 43
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a2/
LA  - en
ID  - JCEM_2018_5_2_a2
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%A A. V. Makarova
%T Stochastic inclusions with current velocities having decomposable right-hand sides
%J Journal of computational and engineering mathematics
%D 2018
%P 34-43
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a2/
%G en
%F JCEM_2018_5_2_a2
Yu. E. Gliklikh; A. V. Makarova. Stochastic inclusions with current velocities having decomposable right-hand sides. Journal of computational and engineering mathematics, Tome 5 (2018) no. 2, pp. 34-43. http://geodesic.mathdoc.fr/item/JCEM_2018_5_2_a2/

[1] E. Nelson, “Derivation of the Schrödinger Equation from Newtonian Mechanics”, Physical Review, 150:4 (1966), 1079-1085 | DOI

[2] E. Nelson, Dynamical Theory of Brownian Motion, Princeton University Press, Princeton, 1967 | MR

[3] E. Nelson, Quantum Fluctuations, Princeton University Press, Princeton, 1985 | MR | Zbl

[4] S. V. Azarina, Yu. E. Gliklikh, “Differential inclusions with mean derivatives”, Dynamic Systems and Applications, 16:1 (2007), 49-71 | MR | Zbl

[5] K. R. Parthasarathy, Introduction to Probability and Measure, Springer-Verlag, New York, 2005 | DOI | MR

[6] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer–Verlag, London, 2011 | DOI | MR | Zbl

[7] S. V. Azarina, Yu. E. Gliklikh, “On the Solvability of Nonautonomous Stochastic Differential Equations with Current Velocities”, Math. Notes, 100:1 (2016), 3–10 | DOI | DOI | MR | Zbl

[8] Yu. E. Gliklikh, A. V. Makarova, “On existence of solutions to stochastic differential inclusions with current velocities II”, J. Comp. Eng. Math., 3:1 (2016), 48–60 | DOI | MR | Zbl

[9] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin–New York, 1994 | DOI | MR

[10] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin–New York, 2001 | DOI | MR

[11] I. I. Gihman, A. V. Skorohod, The Theory of Stochastic Processes I, Springer-Verlag, Berlin, 2004 | DOI | MR