Solvability of the Showalter--Sidorov problem for Sobolev type equations with operators in the form of first-order polynomials from the Laplace--Beltrami operator on differential forms
Journal of computational and engineering mathematics, Tome 4 (2017) no. 3, pp. 27-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider solvability of the Showalter–Sidorov problem for the Barenblatt–Zheltov–Kochina equations and the Hoff linear equation. The equations are linear representatives of the class of linear Sobolev type equations with an irreversible operator under derivative. We search for a solution to the problem in the space of differential $k$-forms defined on a Riemannian manifold without boundary. Both equations are the special cases of an equation with operators in the form of polynomials of the first degree from the Laplace–Beltrami operator, generalizing the Laplace operator in spaces of differential $k$-forms up to a sign. Applying the Sviridyuk theory and the Hodge-Kodaira theorem, we prove an existence of the subspace in which there exists a unique solution to the problem.
Keywords: Sobolev type equation, Riemannian manifolds, manifold without boundary, differential forms, Laplace–Beltrami operator.
@article{JCEM_2017_4_3_a3,
     author = {D. E. Shafranov and N. V. Adukova},
     title = {Solvability of the {Showalter--Sidorov} problem for {Sobolev} type equations with operators in the form of first-order polynomials from the {Laplace--Beltrami} operator on differential forms},
     journal = {Journal of computational and engineering mathematics},
     pages = {27--34},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a3/}
}
TY  - JOUR
AU  - D. E. Shafranov
AU  - N. V. Adukova
TI  - Solvability of the Showalter--Sidorov problem for Sobolev type equations with operators in the form of first-order polynomials from the Laplace--Beltrami operator on differential forms
JO  - Journal of computational and engineering mathematics
PY  - 2017
SP  - 27
EP  - 34
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a3/
LA  - en
ID  - JCEM_2017_4_3_a3
ER  - 
%0 Journal Article
%A D. E. Shafranov
%A N. V. Adukova
%T Solvability of the Showalter--Sidorov problem for Sobolev type equations with operators in the form of first-order polynomials from the Laplace--Beltrami operator on differential forms
%J Journal of computational and engineering mathematics
%D 2017
%P 27-34
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a3/
%G en
%F JCEM_2017_4_3_a3
D. E. Shafranov; N. V. Adukova. Solvability of the Showalter--Sidorov problem for Sobolev type equations with operators in the form of first-order polynomials from the Laplace--Beltrami operator on differential forms. Journal of computational and engineering mathematics, Tome 4 (2017) no. 3, pp. 27-34. http://geodesic.mathdoc.fr/item/JCEM_2017_4_3_a3/

[1] G. I. Barenblatt, Yu. P. Zheltov, I. N. Kochina, “Basic Concepts in the Theory of Seepage of Homogeneous Fluids in Fissurized Rocks [Strata]”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | Zbl

[2] N. A. Hoff, “Greep buckling”, Journal of the Aeronautical Sciences, 7:1 (1965), 1–20 | MR

[3] G. A. Sviridyuk, N. A. Manakova, “Dinamicheskie modeli sobolevskogo tipa s usloviem Shouoltera–Sidorova i additivnymi «shumami»”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:1 (2014), 90–103 | DOI | Zbl

[4] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Shouoltera–Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 3:1 (2010), 104–125 | Zbl

[5] F. Warner, Foundations of Differentiable Manifolds and Lie Groups, v. 94, Graduate Texts in Mathematics, Springer-Verlag, 1983 | DOI | MR | Zbl

[6] D. E. Shafranov, A. I. Shvedchikova, “Uravnenie Khoffa kak model uprugoi obolochki”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 12, 77–81 | Zbl

[7] A.A. Zamyshlyaeva, Dzh.K.T. Al-Isavi, “O nekotorykh svoistvakh reshenii odnogo klassa evolyutsionnykh matematicheskikh modelei sobolevskogo tipa v kvazisobolevykh prostranstvakh”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 8:4 (2015), 113–119 (in English)

[8] M. A. Sagadeeva, F. L. Hasan, “Bounded solutions of Barenblatt–Zheltov–Kochina model in quasi-Sobolev spaces”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:4 (2015), 138–144 | DOI | Zbl

[9] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, v. 42, Inverse and Ill-Posed Problems Series, de Gruyer, 2012, 216+viii pp. | DOI | MR

[10] A. A. Dezin, Mnogomernyi analiz i diskretnye modeli, Nauka, Novosibirsk, 1990 | MR

[11] K. Maurin, Metody Przestrzeni Hilberta, Państwowe Wydawnictwo Naukowe, Warsawa, 1959 | MR | MR | Zbl

[12] R. Palais, Seminar on the Atiyah–Singer Index Theorem, Princeton University Press, Princeton, 1965 | MR | Zbl