Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2017_4_2_a7, author = {N. N. Solovyova and S. A. Zagrebina}, title = {Multipoint initial-final value problem for {Hoff} equation in {quasi-Sobolev} spaces}, journal = {Journal of computational and engineering mathematics}, pages = {73--79}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a7/} }
TY - JOUR AU - N. N. Solovyova AU - S. A. Zagrebina TI - Multipoint initial-final value problem for Hoff equation in quasi-Sobolev spaces JO - Journal of computational and engineering mathematics PY - 2017 SP - 73 EP - 79 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a7/ LA - en ID - JCEM_2017_4_2_a7 ER -
%0 Journal Article %A N. N. Solovyova %A S. A. Zagrebina %T Multipoint initial-final value problem for Hoff equation in quasi-Sobolev spaces %J Journal of computational and engineering mathematics %D 2017 %P 73-79 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a7/ %G en %F JCEM_2017_4_2_a7
N. N. Solovyova; S. A. Zagrebina. Multipoint initial-final value problem for Hoff equation in quasi-Sobolev spaces. Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 73-79. http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a7/
[1] F. L. Hasan, “Solvability of initial problems for one class of dynamical equations in quasi-Sobolev spaces”, J. Comp. Eng. Math., 2:3 (2015), 34–42 | DOI | Zbl
[2] A. A. Pankov, T. E. Pankova, “Nelineinye evolyutsionnye uravneniya s neobratimym operatornym koeffitsientom pri proizvodnoi”, Doklady Akademii nauk Ukrainy, 1993, no. 9, 18–20
[3] S. G. Pyatkov, Operator Theory. Nonclassical Problems, VSP, Utrecht, Boston, Koln, 2002 | MR | Zbl
[4] G. A. Sviridyuk, S. A. Zagrebina, “Verigin's Problem for Linear Equations of the Sobolev Type with Relatively $p$-Sectorial Operators”, Differ. Equ., 38:12 (2002), 1745–1752 | DOI | MR | Zbl
[5] G. A. Sviridyuk, “On the general theory of operator semigroups”, Russian Math. Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl
[6] S. A. Zagrebina, “Nachalno-konechnaya zadacha dlya lineinoi sistemy Nave–Stoksa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 7, 35–39 | MR | Zbl
[7] S. A. Zagrebina, “Mnogotochechnaya nachalno-konechnaya zadacha dlya lineinoi modeli Khoffa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 11, 4–12 | Zbl
[8] G. A. Sviridyuk, Dzh. K. Al-Delfi, “Kvazioperator Laplasa v kvazibanakhovykh prostranstvakh”, Differentsialnye uravneniya. Funktsionalnye prostranstva. Teoriya priblizhenii (Novosibirsk, 2013), Tezsy dokladov mezhdunarodnoi konferentsii, Novosibirsk, 2013, 247
[9] M. A. Sagadeeva, F. L. Khasan, “Suschestvovanie invariantnykh podprostranstv i eksponentsialnykh dikhotomii reshenii dinamicheskikh uravnenii sobolevskogo tipa v kvazibanakhovykh prostranstvakh”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 46–53 | DOI | Zbl
[10] D. R. Safiullina, N. N. Solovëva, “Uravnenie sobolevskogo tipa v kvazibanakhovykh prostranstvakh s mnogotochechnym nachalno-konechnym usloviem”, Yuzhno-Uralskaya molodezhnaya shkola po matematicheskomu modelirovaniyu (Chelyabinsk, 2016), Sbornik trudov III Vserossiiskoi nauchno-prakticheskoi konferentsii, Izd.tsentr YuUrGU, Chelyabinsk, 2016, 175–180
[11] Dzh. K. Al-Delfi, “Kvazisobolevy prostranstva $l_p^m$”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013), 107–109