Multipoint initial-final value problem for Hoff equation in quasi-Sobolev spaces
Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 73-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an analog of the linear Hoff equation in quasi-Sobolev spaces with multipoint initial-final value condition. The research is based on the abstract results obtained for the Sobolev type equation with multipoint initial-final value condition in the quasi-Banach spaces of sequences. The unique solvability of the studied problem is obtained.
Keywords: multipoint initial-final value problem, quasi-Banach space of sequences, splitting theorem, Hoff equation.
@article{JCEM_2017_4_2_a7,
     author = {N. N. Solovyova and S. A. Zagrebina},
     title = {Multipoint initial-final value problem for {Hoff} equation in {quasi-Sobolev} spaces},
     journal = {Journal of computational and engineering mathematics},
     pages = {73--79},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a7/}
}
TY  - JOUR
AU  - N. N. Solovyova
AU  - S. A. Zagrebina
TI  - Multipoint initial-final value problem for Hoff equation in quasi-Sobolev spaces
JO  - Journal of computational and engineering mathematics
PY  - 2017
SP  - 73
EP  - 79
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a7/
LA  - en
ID  - JCEM_2017_4_2_a7
ER  - 
%0 Journal Article
%A N. N. Solovyova
%A S. A. Zagrebina
%T Multipoint initial-final value problem for Hoff equation in quasi-Sobolev spaces
%J Journal of computational and engineering mathematics
%D 2017
%P 73-79
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a7/
%G en
%F JCEM_2017_4_2_a7
N. N. Solovyova; S. A. Zagrebina. Multipoint initial-final value problem for Hoff equation in quasi-Sobolev spaces. Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 73-79. http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a7/

[1] F. L. Hasan, “Solvability of initial problems for one class of dynamical equations in quasi-Sobolev spaces”, J. Comp. Eng. Math., 2:3 (2015), 34–42 | DOI | Zbl

[2] A. A. Pankov, T. E. Pankova, “Nelineinye evolyutsionnye uravneniya s neobratimym operatornym koeffitsientom pri proizvodnoi”, Doklady Akademii nauk Ukrainy, 1993, no. 9, 18–20

[3] S. G. Pyatkov, Operator Theory. Nonclassical Problems, VSP, Utrecht, Boston, Koln, 2002 | MR | Zbl

[4] G. A. Sviridyuk, S. A. Zagrebina, “Verigin's Problem for Linear Equations of the Sobolev Type with Relatively $p$-Sectorial Operators”, Differ. Equ., 38:12 (2002), 1745–1752 | DOI | MR | Zbl

[5] G. A. Sviridyuk, “On the general theory of operator semigroups”, Russian Math. Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl

[6] S. A. Zagrebina, “Nachalno-konechnaya zadacha dlya lineinoi sistemy Nave–Stoksa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 7, 35–39 | MR | Zbl

[7] S. A. Zagrebina, “Mnogotochechnaya nachalno-konechnaya zadacha dlya lineinoi modeli Khoffa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 11, 4–12 | Zbl

[8] G. A. Sviridyuk, Dzh. K. Al-Delfi, “Kvazioperator Laplasa v kvazibanakhovykh prostranstvakh”, Differentsialnye uravneniya. Funktsionalnye prostranstva. Teoriya priblizhenii (Novosibirsk, 2013), Tezsy dokladov mezhdunarodnoi konferentsii, Novosibirsk, 2013, 247

[9] M. A. Sagadeeva, F. L. Khasan, “Suschestvovanie invariantnykh podprostranstv i eksponentsialnykh dikhotomii reshenii dinamicheskikh uravnenii sobolevskogo tipa v kvazibanakhovykh prostranstvakh”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 46–53 | DOI | Zbl

[10] D. R. Safiullina, N. N. Solovëva, “Uravnenie sobolevskogo tipa v kvazibanakhovykh prostranstvakh s mnogotochechnym nachalno-konechnym usloviem”, Yuzhno-Uralskaya molodezhnaya shkola po matematicheskomu modelirovaniyu (Chelyabinsk, 2016), Sbornik trudov III Vserossiiskoi nauchno-prakticheskoi konferentsii, Izd.tsentr YuUrGU, Chelyabinsk, 2016, 175–180

[11] Dzh. K. Al-Delfi, “Kvazisobolevy prostranstva $l_p^m$”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013), 107–109