About one numerical method for solving direct and inverse problems of the dynamic measurements theory
Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 49-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The direct and inverse problems of measurement theory based on linear differential operator with the boundary conditions of various types were considered. The boundary conditions are linear and linear independent functionals (including Cauchy problem, two-point boundary value problem, the Vallee-Poussin problem, the multipoint boundary value problems, the distributed data problems, and so on). An approach is proposed to investigate such problems on the basis of mathematical models realized in the form of linear boundary value problems and accompanying integral equations using the Green's function. The Green's functions, in the absence of information on the fundamental system of solutions of the corresponding differential equation, is constructed as a solution of the Fredholm integral equation of the second kind. The characteristics of the Fredholm equation were determined by the Green's function of the auxiliary problem. The proposed method allows to solve both the direct (the problem of finding solutions) and the inverse (the problem of finding the right-hand side of the equation from the experimentally obtained solution). The examples the work of programs realized in the system Mathematica 8.0 based on the described method were given.
Keywords: Green's function, nonlocal boundary conditions, measurements theory, dynamic measurements.
@article{JCEM_2017_4_2_a4,
     author = {Yu. S. Popenko},
     title = {About one numerical method for solving direct and inverse problems of the dynamic measurements theory},
     journal = {Journal of computational and engineering mathematics},
     pages = {49--60},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a4/}
}
TY  - JOUR
AU  - Yu. S. Popenko
TI  - About one numerical method for solving direct and inverse problems of the dynamic measurements theory
JO  - Journal of computational and engineering mathematics
PY  - 2017
SP  - 49
EP  - 60
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a4/
LA  - en
ID  - JCEM_2017_4_2_a4
ER  - 
%0 Journal Article
%A Yu. S. Popenko
%T About one numerical method for solving direct and inverse problems of the dynamic measurements theory
%J Journal of computational and engineering mathematics
%D 2017
%P 49-60
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a4/
%G en
%F JCEM_2017_4_2_a4
Yu. S. Popenko. About one numerical method for solving direct and inverse problems of the dynamic measurements theory. Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 49-60. http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a4/

[1] V. A. Granovskii, Dinamicheskie izmereniya. Osnovy metrologicheskogo obespecheniya, Energoatomizdat, L., 1984, 224 pp. | MR

[2] A. L. Shestakov, Metody teorii avtomaticheskogo upravleniya v dinamicheskikh izmereniyakh, Izd. tsentr YuUrGU, Chelyabinsk, 2013, 257 pp.

[3] A. B. Sergienko, Tsifrovaya obrabotka signalov, Piter, SPb., 2002, 608 pp.

[4] Yu. S. Asfandiyarova, “Ob odnom sposobe obrascheniya lineinykh zadach dlya obyknovennykh differentsialnykh uravnenii”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 2011, no. 5, 12–17 | Zbl

[5] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izdatelstvo moskovskogo universiteta, M., 1976, 304 pp. | MR

[6] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969, 528 pp. | MR

[7] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[8] V. I. Zalyapin, H. V. Kharitonova, S. V. Ermakov, “Inverse Problems of the Measurements Theory”, Inverse Problems, Design and Optimization Symposium, Proc. Int. Symposium (Miami, FL, USA, 2007, April 16-18), 2007, 91–96

[9] Yu. S. Asfandiyarova, V. I. Zalyapin, E. V. Kharitonova, “Metod integralnykh uravnenii postroeniya funktsii Grina”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 13, 16–23 | Zbl

[10] V. I. Zalyapin, Yu. S. Popenko, E. V. Kharitonova, “Otsenka pogreshnosti chislennogo metoda resheniya odnoi obratnoi zadachi”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 6:3 (2013), 51–58 | Zbl

[11] Yu. S. Asfandiyarova, “Chislennyi analiz odnoi obratnoi zadachi dlya lineinogo differentsialnogo uravneniya”, Trudy Matematicheskogo tsentra im. N.I. Lobachevskogo, v. 40, Kazan. matem. obsch-vo, Kazan, 2010, 32–36