Numerical investigation for the start control and final observation problem in model of an I-beam deformation
Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 26-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the start control and the final observation of solutions to the Showalter – Sidorov problem for the mathematical model of an I-beam deformation. We construct the sufficient conditions for the existence of the start control and the final observation by weak generalized solutions of the considered model with the initial Showalter – Sidorov condition. Based on the theoretical results, we construct the algorithm of the numerical method to solve the problem of start control and final observation for the model of an I-beam deformation. The results of computational experiments are presented.
Keywords: Sobolev type equation, problem of start control and final observation, model of I-beam deformation, the Galerkin method, decomposition method.
@article{JCEM_2017_4_2_a2,
     author = {N. A. Manakova and K. V. Vasiuchkova},
     title = {Numerical investigation for the start control and final observation problem in model of an {I-beam} deformation},
     journal = {Journal of computational and engineering mathematics},
     pages = {26--40},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a2/}
}
TY  - JOUR
AU  - N. A. Manakova
AU  - K. V. Vasiuchkova
TI  - Numerical investigation for the start control and final observation problem in model of an I-beam deformation
JO  - Journal of computational and engineering mathematics
PY  - 2017
SP  - 26
EP  - 40
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a2/
LA  - en
ID  - JCEM_2017_4_2_a2
ER  - 
%0 Journal Article
%A N. A. Manakova
%A K. V. Vasiuchkova
%T Numerical investigation for the start control and final observation problem in model of an I-beam deformation
%J Journal of computational and engineering mathematics
%D 2017
%P 26-40
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a2/
%G en
%F JCEM_2017_4_2_a2
N. A. Manakova; K. V. Vasiuchkova. Numerical investigation for the start control and final observation problem in model of an I-beam deformation. Journal of computational and engineering mathematics, Tome 4 (2017) no. 2, pp. 26-40. http://geodesic.mathdoc.fr/item/JCEM_2017_4_2_a2/

[1] N. A. Hoff, “Greep buckling”, Journal of the Aeronautical Sciences, 7:1 (1965), 1–20

[2] G. A. Sviridyuk, V. O. Kazak, “The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation”, Math. Notes, 71:2 (2002), 262–266 | DOI | DOI | MR | Zbl

[3] A. A. Bayazitova, “Zadacha Shouoltera–Sidorova dlya modeli Khoffa na geometricheskom grafe”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 4:1 (2011), 2–8 | Zbl

[4] G. A. Sviridyuk, V. V. Shemetova, “Hoff equations on graphs”, Differ. Equ., 42:1 (2006), 139–145 | DOI | MR | Zbl

[5] G. A. Sviridyuk, N. A. Manakova, “An optimal control problem for the Hoff equation”, Journal of Applied and Industrial Mathematics, 1:2 (2007), 247–253 | DOI | MR

[6] D. E. Shafranov, A. I. Shvedchikova, “Uravnenie Khoffa kak model uprugoi obolochki”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 12, 77–81 | Zbl

[7] J.-L. Lions, Controle optimal de systemes gouvernes par des equations aux daerivaees partielles, Dunod, Paris, 1968 | MR

[8] G. A. Sviridyuk, A. A. Efremov, “Optimal control of Sobolev-type linear equations with relatively $p$-spectorial operators”, Differ. Equ., 31:11 (1995), 1882–1890 | MR | MR | Zbl

[9] A. A. Zamyshlyaeva, O. N. Tsyplenkova, “Optimal Control of Solutions of the Showalter - Sidorov - Dirichlet Problem for the Boussinesq – Löve Equation”, Differential Equations, 49:11 (2013), 1356–1365 | DOI | DOI | MR | Zbl

[10] A. V. Keller, M. A. Sagadeeva, “Zadacha optimalnogo izmereniya dlya modeli izmeritelnogo ustroistva s determinirovannym multiplikativnym vozdeistviem i inertsionnostyu”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:1 (2014), 134–138 | DOI | Zbl

[11] N. A. Manakova, “Metod dekompozitsii v zadache optimalnogo upravleniya dlya polulineinykh modelei sobolevskogo tipa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:2 (2015), 133–137 | DOI | MR | Zbl

[12] E. A. Bogatyreva, “Zadacha startovogo upravleniya i finalnogo nablyudeniya dlya odnogo kvazilineinogo uravneniya sobolevskogo tipa”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 5–10 | DOI | Zbl

[13] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 [H. Gajewski, K. Grpoger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordfferentialgleichungen, Akademie Verlag, Berlin, 1974 ] | MR

[14] A. B. Al’shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, De Gruyter Series in Nonlinear Analysis and Applications, 15, de Gruyter, Berlin, 2011, xii+648 pp. | MR | Zbl

[15] J.-L. Lions, Quelques methodes de raesolution des problemes aux limites nonlineaires, Dunod, Paris, 1969 | MR

[16] N. A. Manakova, “Matematicheskie modeli i optimalnoe upravlenie protsessami filtratsii i deformatsii”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:3 (2015), 5–24 | DOI | Zbl