Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2017_4_1_a1, author = {J. K. T. Al-Isawi}, title = {Computational experiments for one class of mathematical models in thermodynamics and hydrodynamics}, journal = {Journal of computational and engineering mathematics}, pages = {16--26}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a1/} }
TY - JOUR AU - J. K. T. Al-Isawi TI - Computational experiments for one class of mathematical models in thermodynamics and hydrodynamics JO - Journal of computational and engineering mathematics PY - 2017 SP - 16 EP - 26 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a1/ LA - en ID - JCEM_2017_4_1_a1 ER -
%0 Journal Article %A J. K. T. Al-Isawi %T Computational experiments for one class of mathematical models in thermodynamics and hydrodynamics %J Journal of computational and engineering mathematics %D 2017 %P 16-26 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a1/ %G en %F JCEM_2017_4_1_a1
J. K. T. Al-Isawi. Computational experiments for one class of mathematical models in thermodynamics and hydrodynamics. Journal of computational and engineering mathematics, Tome 4 (2017) no. 1, pp. 16-26. http://geodesic.mathdoc.fr/item/JCEM_2017_4_1_a1/
[1] P. Ya. Polubarinova-Kochina, Teoriya dvizheniya gruntovykh vod, Nauka, M., 1977, 664 pp. | MR
[2] E. S. Dzektser, “Obobschenie uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, DAN SSSR, 202:5 (1972), 1031–1033 | Zbl
[3] G. A. Sviridyuk, S. A. Zagrebina, “Neklassicheskie modeli matematicheskoi fiziki”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 14, 7–18 | Zbl
[4] M. C. Cross, P. C. Hohenberg, “Pattern formation outside of equilibrium”, Reviews of Modern Physics, 65 (1993), 851–1112 | DOI
[5] G. T. Dee, W. van Saarloos, “Bistable systems with propagating fronts leading to pattern formation”, Physical Review Letters, 60 (1988), 2641–2644 | DOI
[6] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, v. 42, Inverse and Ill-Posed Problems Series, de Gruyer, 2012, 216+viii pp. | DOI | MR
[7] G. A. Sviridyuk, “Phase portraits of Sobolev-type semilinear equations with a relatively strongly sectorial operator”, St. Petersburg Math. J., 6:5 (1995), 1109–1126 | MR | Zbl
[8] A. Favini, A. Yagi, Degenerate differential equation in Banach spaces , Marcel Dekker Inc., N.-Y.; Basel; Hong Kong, 1999, 312 pp. | MR
[9] G. A. Sviridyuk, S. V. Brychev, “Numerical solution of systems of equations of Leontief type”, Russian Math. (Iz. VUZ), 47:8 (2003), 44–50 | MR | Zbl
[10] J. K. T. Al-Isawi, A. A. Zamyshlyaeva, “Computational experiment for one class of evolution mathematical models in quasi-Sobolev spaces”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:4 (2016), 141–147 | DOI
[11] A. A. Zamyshlyaeva, D. K. T. Al-Isawi, “On some properties of solutions to one class of evolution Sobolev type mathematical models in quasi-Sobolev spaces”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:4 (2015), 113–119 | DOI | Zbl
[12] A. V. Keller, Issledovanie ogranichennykh reshenii lineinykh uravnenii tipa Soboleva, diss. ...kand. fiz.-matem. nauk, Chelyabinsk, 1997, 115 pp.