Energy consumption modelling using neural networks of direct distribution on example of Russia united power system
Journal of computational and engineering mathematics, Tome 3 (2016) no. 4, pp. 73-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes a model to estimate an electrical energy consumption on the basis of neural network of direct distribution. The model is tested on actual hourly data of both United energy system of Wholesale electricity market and power of Russia. An algorithm to train a neural network with different numbers of neurons in the hidden layer is described. We tested the obtained model and find that a forecast error is 2.13 % for a network with 72 neurons in the hidden layer. The designed scientific instrument is recommended in operating activities of electric power subjects, when main parameters of energy market are forecasted in order to reduce the penalties by improving the accuracy of forecasts.
Keywords: electric energy subjects, energy consumption, neural networks, activation function, wholesale market of electric energy and power, forecast.
@article{JCEM_2016_3_4_a5,
     author = {V. G. Mokhov and T. S. Demyanenko and I. P. Ostanin},
     title = {Energy consumption modelling using neural networks of direct distribution on example of {Russia} united power system},
     journal = {Journal of computational and engineering mathematics},
     pages = {73--78},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_4_a5/}
}
TY  - JOUR
AU  - V. G. Mokhov
AU  - T. S. Demyanenko
AU  - I. P. Ostanin
TI  - Energy consumption modelling using neural networks of direct distribution on example of Russia united power system
JO  - Journal of computational and engineering mathematics
PY  - 2016
SP  - 73
EP  - 78
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2016_3_4_a5/
LA  - en
ID  - JCEM_2016_3_4_a5
ER  - 
%0 Journal Article
%A V. G. Mokhov
%A T. S. Demyanenko
%A I. P. Ostanin
%T Energy consumption modelling using neural networks of direct distribution on example of Russia united power system
%J Journal of computational and engineering mathematics
%D 2016
%P 73-78
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2016_3_4_a5/
%G en
%F JCEM_2016_3_4_a5
V. G. Mokhov; T. S. Demyanenko; I. P. Ostanin. Energy consumption modelling using neural networks of direct distribution on example of Russia united power system. Journal of computational and engineering mathematics, Tome 3 (2016) no. 4, pp. 73-78. http://geodesic.mathdoc.fr/item/JCEM_2016_3_4_a5/

[1] V. G. Mokhov, T. S. Demyanenko, “Modelling of the time series digressions by the example of the UPS of the Ural”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:4 (2015), 127–130 | DOI | Zbl

[2] D. Kriesel, A Brief Introduction to Neural Networks, Bonn, Germany, 2007, 226+xvii pp.

[3] C. Khaikin, Neironnye seti: Polnyi kurs, Vilyams, M., 2006

[4] C. Osovskii, Neironnye seti dlya obrabotki informatsii, Finansy i statistika, M., 2002