Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2016_3_2_a6, author = {A. A. Zamyshlyaeva and O. N. Tsyplenkova and E. V. Bychkov}, title = {Optimal control of solutions to the initial-final problem for the {Sobolev} type equation of higher order}, journal = {Journal of computational and engineering mathematics}, pages = {57--67}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a6/} }
TY - JOUR AU - A. A. Zamyshlyaeva AU - O. N. Tsyplenkova AU - E. V. Bychkov TI - Optimal control of solutions to the initial-final problem for the Sobolev type equation of higher order JO - Journal of computational and engineering mathematics PY - 2016 SP - 57 EP - 67 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a6/ LA - en ID - JCEM_2016_3_2_a6 ER -
%0 Journal Article %A A. A. Zamyshlyaeva %A O. N. Tsyplenkova %A E. V. Bychkov %T Optimal control of solutions to the initial-final problem for the Sobolev type equation of higher order %J Journal of computational and engineering mathematics %D 2016 %P 57-67 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a6/ %G en %F JCEM_2016_3_2_a6
A. A. Zamyshlyaeva; O. N. Tsyplenkova; E. V. Bychkov. Optimal control of solutions to the initial-final problem for the Sobolev type equation of higher order. Journal of computational and engineering mathematics, Tome 3 (2016) no. 2, pp. 57-67. http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a6/
[1] S. A. Zagrebina, “Nachalno-konechnaya zadacha dlya lineinoi sistemy Nave–Stoksa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 7, 35–39 | Zbl
[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Inverse and Ill-Posed Problems Series, 42, de Gruyer, 2012, 216+viii pp. | DOI | MR
[3] A. V. Keller, “Chislennoe reshenie zadachi startovogo upravleniya dlya sistemy uravnenii leontevskogo tipa”, Obozrenie prikladnoi i promyshlennoi matematiki, 16:2 (2009), 345–346
[4] A. V. Keller, “Algoritm resheniya zadachi Shouoltera–Sidorova dlya modelei leontevskogo tipa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 7, 40–46 | Zbl
[5] A. V. Keller, E. I. Nazarova, “Zadacha optimalnogo izmereniya: chislennoe reshenie, algoritm programmy”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 4:3 (2011), 74–82 | Zbl
[6] G. A. Sviridyuk, A. A. Efremov, “Optimal control of Sobolev-type linear equations with relatively $p$-spectorial operators”, Differential Equations, 31:11 (1996), 1882–1890 | MR | Zbl
[7] N. A. Manakova, “Optimal control problem for the Oskolkov nonlinear filtration equation”, Differential Equations, 43:9 (2007), 1213–1221 | DOI | MR | Zbl
[8] N. A. Manakova, A. G. Dylkov, “Optimalnoe upravlenie resheniyami nachalno-konechnoi zadachi dlya lineinykh uravnenii sobolevskogo tipa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 8, 113–114 | Zbl
[9] S. A. Zagrebina, “Nachalno-konechnye zadachi dlya neklassicheskikh modelei matematicheskoi fiziki”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 6:2 (2013), 5–24 | Zbl
[10] S. A. Zagrebina, M. A. Sagadeeva, “Obobschennaya zadacha Shouoltera – Sidorova dlya uravnenii sobolevskogo tipa s silno $(L,p)$-radialnym operatorom”, Vestnik MaGU. Matematika, 2006, no. 9, 17–27, MaGU, Magnitogorsk | Zbl
[11] G. A. Sviridyuk, N. A. Manakova, “Dinamicheskie modeli sobolevskogo tipa s usloviem Shouoltera–Sidorova i additivnymi «shumami»”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:1 (2014), 90–103 | DOI | Zbl
[12] A. Favini, G. A. Sviridyuk, A. A. Zamyshlyaeva, “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | DOI | MR | Zbl
[13] A. Favini, G. A. Sviridyuk, N. A. Manakova, “Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “Noises””, Abstract and Applied Analysis, 2015 (2015), 697410, 8 pp. | DOI | MR | Zbl
[14] A. V. Keller, A. L. Shestakov, G. A. Sviridyuk, Yu. V. Khudyakov, “The Numerical Algorithms for the Measurement of the Deterministic and Stochastic Signals”, Semigroups of Operators – Theory and Applications, Proc. Int. Conference (Bedlewo, Poland, 2013, October 6–10), Springer Proceedings in Mathematics and Statistics, 113, eds. J. Banasiak, A. Bobrowski, M. Lachowicz, Springer International Publishing, 2015, 183–195 | DOI | MR | Zbl
[15] N. A. Manakova, G. A. Sviridyuk, “An Optimal Control of the Solutions of the Initial-Final Problem for Linear Sobolev Type Equations with Strongly Relatively p-Radial Operator”, Semigroups of Operators – Theory and Applications, Proc. Int. Conference (Bedlewo, Poland, 2013, October 6–10), Springer Proceedings in Mathematics and Statistics, 113, eds. J. Banasiak, A. Bobrowski, M. Lachowicz, Springer International Publishing, 2015, 213–224 | DOI | MR | Zbl
[16] M. A. Sagadeeva, G. A. Sviridyuk, “The Nonautonomous Linear Oskolkov Model on a Geometrical Graph: the Stability of Solutions and Optimal Control Problem”, Semigroups of Operators – Theory and Applications, Proc. Int. Conference (Bedlewo, Poland, 2013, October 6–10), Springer Proceedings in Mathematics and Statistics, 113, eds. J. Banasiak, A. Bobrowski, M. Lachowicz, Springer International Publishing, 2015, 257–271 | DOI | MR | Zbl
[17] A. L. Shestakov, G. A. Sviridyuk, Yu. V. Khudyakov, “Dynamical Measurements in the View of the Group Operators Theory”, Semigroups of Operators – Theory and Applications, Proc. Int. Conference (Bedlewo, Poland, 2013, October 6–10), Springer Proceedings in Mathematics and Statistics, 113, eds. J. Banasiak, A. Bobrowski, M. Lachowicz, Springer International Publishing, 2015, 273–286 | DOI | MR | Zbl
[18] S. A. Zagrebina, E. A. Soldatova, G. A. Sviridyuk, “The Stochastic Linear Oskolkov Model of the Oil Transportation by the Pipeline”, Semigroups of Operators – Theory and Applications, Proc. Int. Conference (Bedlewo, Poland, 2013, October 6–10), Springer Proceedings in Mathematics and Statistics, 113, eds. J. Banasiak, A. Bobrowski, M. Lachowicz, Springer International Publishing, 2015, 317–326 | DOI | MR
[19] A. A. Zamyshlyaeva, G. A. Sviridyuk, “The Linearized Benney – Luke Mathematical Model with Additive White Noise”, Semigroups of Operators – Theory and Applications, Proc. Int. Conference (Bedlewo, Poland, 2013, October 6–10), Springer Proceedings in Mathematics and Statistics, 113, eds. J. Banasiak, A. Bobrowski, M. Lachowicz, Springer International Publishing, 2015, 327–336 | DOI | MR
[20] A. A. Zamyshlyaeva, “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vtorogo poryadka”, Vychislitelnye tekhnologii, 8:4 (2003), 45–54 | Zbl
[21] A. A. Zamyshlyaeva, E. V. Bychkov, “Fazovoe prostranstvo modifitsirovannogo uravneniya Bussineska”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 12, 13–19 | Zbl
[22] S. A. Zagrebina, A. S. Konkina, “The multipoint initial-final value condition for the Navier–Stokes linear model”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:1 (2015), 132–136 | DOI | Zbl
[23] E. V. Bychkov, “Ob odnoi polulineinoi matematicheskoi modeli sobolevskogo tipa vysokogo poryadka”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:2 (2014), 111–117 | DOI | MR | Zbl
[24] A. A. Zamyshlyaeva, E. V. Bychkov, O. N. Tsyplenkova, “Mathematical models based on Boussinesq–Love equation”, Applied Mathematical Sciences, 8:110 (2014), 5477–5483 | DOI
[25] A. A. Zamyshlyaeva, “Fazovoe prostranstvo uravneniya sobolevskogo tipa vysokogo poryadka”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 4:4 (2011), 45–57 | Zbl
[26] A. A. Zamyshlyaeva, Lineinye uravneniya sobolevskogo tipa vysokogo poryadka, Izd. tsentr YuUrGU, Chelyabinsk, 2012, 107 pp. | MR
[27] A. A. Zamyshlyaeva, “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:2 (2014), 5–28 | DOI | Zbl
[28] O. Tsyplenkova, “Optimal control of solutions to Cauchy problem for Sobolev type equation of higher order”, J. Comp. Eng. Math., 1:2 (2014), 62–67 | MR | Zbl