Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2016_3_2_a4, author = {S. I. Kadchenko and A. {\CYRO}. Kondyukov}, title = {Numerical study of a flow of viscoelastic fluid of {Kelvin--Voigt} having zero order in a magnetic field}, journal = {Journal of computational and engineering mathematics}, pages = {40--47}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a4/} }
TY - JOUR AU - S. I. Kadchenko AU - A. О. Kondyukov TI - Numerical study of a flow of viscoelastic fluid of Kelvin--Voigt having zero order in a magnetic field JO - Journal of computational and engineering mathematics PY - 2016 SP - 40 EP - 47 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a4/ LA - en ID - JCEM_2016_3_2_a4 ER -
%0 Journal Article %A S. I. Kadchenko %A A. О. Kondyukov %T Numerical study of a flow of viscoelastic fluid of Kelvin--Voigt having zero order in a magnetic field %J Journal of computational and engineering mathematics %D 2016 %P 40-47 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a4/ %G en %F JCEM_2016_3_2_a4
S. I. Kadchenko; A. О. Kondyukov. Numerical study of a flow of viscoelastic fluid of Kelvin--Voigt having zero order in a magnetic field. Journal of computational and engineering mathematics, Tome 3 (2016) no. 2, pp. 40-47. http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a4/
[1] A. P. Oskolkov, “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i Oldroita”, Trudy MIAN SSSR, 179 (1988), 126–164 | MR
[2] R. Hide, Mathematical Problems in the Geophisical Sciences, v. 1, AMS, Providence R.I., 1971
[3] Т. Г. Сукачева, А. О. Кондюков, “Фазовое пространство одной задачи магнитогидродинамики”, Дифф. уравнения, 51:4 (2015), 495–501 | DOI | DOI | MR | Zbl
[4] A. O. Kondyukov, T. G. Sukacheva, “Ob odnoi modeli magnitogidrodinamiki nenulevogo poryadka”, Obozrenie prikladnoi i promyshlennoi matematiki, XVI Vserossiiskii Simpozium po prikladnoi i promyshlennoi matematike (Chelyabinsk, 21 – 27 iyunya 2015), v. 22, 2015, 75
[5] A. O. Kondyukov, “Kvazistatsionarnye polutraektorii dlya obobschennoi modeli magnitogidrodinamiki”, Matematika i informatsionnye tekhnologii v neftegazovom komplekse, Tezisy mezhdunarodnoi konferentsii, posvyaschennoi dnyu rozhdeniya velikogo russkogo matematika akademika P.L. Chebysheva (Surgut, 16 – 20 maya 2016), Surgut, 2016, 47
[6] O. P. Matveeva, T. G. Sukacheva, Matematicheskie modeli vyazkouprugikh neszhimaemykh zhidkostei nenulevogo poryadka, Izd. tsentr YuUrGU, Chelyabinsk, 2014, 101 pp.
[7] C. Fletcher, Computational Techniques for Fluid Dynamics, v. 2, Springer–Verlag, Berlin, Heidelberg, 1991 | DOI | MR | Zbl
[8] E. A. Novikov, Razrabotka algoritmov peremennoi struktury dlya resheniya zhestkikh zadach, diss. ... kand. fiz.-matem. nauk, Krasnoyarsk, 2014