Numerical study of a flow of viscoelastic fluid of Kelvin--Voigt having zero order in a magnetic field
Journal of computational and engineering mathematics, Tome 3 (2016) no. 2, pp. 40-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article developed algorithms for the numerical solution of the initial-boundary problem of the flow of an incompressible viscoelastic Kelvin–Voigt fluid in the Earth's magnetic field. The theorem on an existence and uniqueness of this problem solution is proved using the theory of semilinear Sobolev type equations in the works written by T.G. Sukachev, S.A. Kondyukova. The original initial-boundary problem is transformed to the Cauchy problem for ordinary systems of nonlinear equations by sampling. Algorithms based on the explicit one-step schemes having Runge–Kutta type of seventh-order accuracy with a choice of integration step are used to find a numerical solution of the Cauchy problem. Evaluation of control of calculation accuracy at each time step is carried out by a scheme of the eighth order of accuracy. A time step is chosen according to the results of monitoring. Computational experiments show high computational efficiency of the developed algorithms for solving of the problem considered.
Keywords: magnetohydrodynamics, incompressible viscoelastic fluid, explicit one-step formulas of Runge–Kutta, Sobolev type equations.
@article{JCEM_2016_3_2_a4,
     author = {S. I. Kadchenko and A. {\CYRO}. Kondyukov},
     title = {Numerical study of a flow of viscoelastic fluid of {Kelvin--Voigt} having zero order in a magnetic field},
     journal = {Journal of computational and engineering mathematics},
     pages = {40--47},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a4/}
}
TY  - JOUR
AU  - S. I. Kadchenko
AU  - A. О. Kondyukov
TI  - Numerical study of a flow of viscoelastic fluid of Kelvin--Voigt having zero order in a magnetic field
JO  - Journal of computational and engineering mathematics
PY  - 2016
SP  - 40
EP  - 47
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a4/
LA  - en
ID  - JCEM_2016_3_2_a4
ER  - 
%0 Journal Article
%A S. I. Kadchenko
%A A. О. Kondyukov
%T Numerical study of a flow of viscoelastic fluid of Kelvin--Voigt having zero order in a magnetic field
%J Journal of computational and engineering mathematics
%D 2016
%P 40-47
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a4/
%G en
%F JCEM_2016_3_2_a4
S. I. Kadchenko; A. О. Kondyukov. Numerical study of a flow of viscoelastic fluid of Kelvin--Voigt having zero order in a magnetic field. Journal of computational and engineering mathematics, Tome 3 (2016) no. 2, pp. 40-47. http://geodesic.mathdoc.fr/item/JCEM_2016_3_2_a4/

[1] A. P. Oskolkov, “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i Oldroita”, Trudy MIAN SSSR, 179 (1988), 126–164 | MR

[2] R. Hide, Mathematical Problems in the Geophisical Sciences, v. 1, AMS, Providence R.I., 1971

[3] Т. Г. Сукачева, А. О. Кондюков, “Фазовое пространство одной задачи магнитогидродинамики”, Дифф. уравнения, 51:4 (2015), 495–501 | DOI | DOI | MR | Zbl

[4] A. O. Kondyukov, T. G. Sukacheva, “Ob odnoi modeli magnitogidrodinamiki nenulevogo poryadka”, Obozrenie prikladnoi i promyshlennoi matematiki, XVI Vserossiiskii Simpozium po prikladnoi i promyshlennoi matematike (Chelyabinsk, 21 – 27 iyunya 2015), v. 22, 2015, 75

[5] A. O. Kondyukov, “Kvazistatsionarnye polutraektorii dlya obobschennoi modeli magnitogidrodinamiki”, Matematika i informatsionnye tekhnologii v neftegazovom komplekse, Tezisy mezhdunarodnoi konferentsii, posvyaschennoi dnyu rozhdeniya velikogo russkogo matematika akademika P.L. Chebysheva (Surgut, 16 – 20 maya 2016), Surgut, 2016, 47

[6] O. P. Matveeva, T. G. Sukacheva, Matematicheskie modeli vyazkouprugikh neszhimaemykh zhidkostei nenulevogo poryadka, Izd. tsentr YuUrGU, Chelyabinsk, 2014, 101 pp.

[7] C. Fletcher, Computational Techniques for Fluid Dynamics, v. 2, Springer–Verlag, Berlin, Heidelberg, 1991 | DOI | MR | Zbl

[8] E. A. Novikov, Razrabotka algoritmov peremennoi struktury dlya resheniya zhestkikh zadach, diss. ... kand. fiz.-matem. nauk, Krasnoyarsk, 2014