Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2016_3_1_a2, author = {E. V. Bychkov and Ya. O. Al'-Ani}, title = {A linearized model of vibrations in the {DNA} molecule in the {quasi-Banach} spaces}, journal = {Journal of computational and engineering mathematics}, pages = {20--26}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_1_a2/} }
TY - JOUR AU - E. V. Bychkov AU - Ya. O. Al'-Ani TI - A linearized model of vibrations in the DNA molecule in the quasi-Banach spaces JO - Journal of computational and engineering mathematics PY - 2016 SP - 20 EP - 26 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2016_3_1_a2/ LA - en ID - JCEM_2016_3_1_a2 ER -
%0 Journal Article %A E. V. Bychkov %A Ya. O. Al'-Ani %T A linearized model of vibrations in the DNA molecule in the quasi-Banach spaces %J Journal of computational and engineering mathematics %D 2016 %P 20-26 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2016_3_1_a2/ %G en %F JCEM_2016_3_1_a2
E. V. Bychkov; Ya. O. Al'-Ani. A linearized model of vibrations in the DNA molecule in the quasi-Banach spaces. Journal of computational and engineering mathematics, Tome 3 (2016) no. 1, pp. 20-26. http://geodesic.mathdoc.fr/item/JCEM_2016_3_1_a2/
[1] P. L. Cristiansen, V. Muto, P. S. Lomdahl, “On a Toda Lattice Model with a Transversal Degree of Freedom”, Nonlinearity, 1990, no. 4, 477-501 | MR
[2] A. A. Zamyshlyaeva, E. V. Bychkov, “Fazovoe prostranstvo modifitsirovannogo uravneniya Bussineska”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, no. 18(277), 13–19 [A. A. Zamyshlyaeva, E. V. Bychkov, “The Phase Space of the Modified Boussinesq Equation”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2012, No 18(277), 13-19 ] | Zbl
[3] A. A. Zamyshlyaeva, Issledovanie odnogo klassa lineinykh uravnenii sobolevskogo tipa vysokogo poryadka, diss. kand. fiz.-mat. nauk, Chelyabinsk, 2003
[4] G. A. Sviridyuk, D. K. Al-Delfi, “Teorema o rasscheplenii v kvazibanakhovykh prostranstvakh”, Matematicheskie zametki SVFU, 20:2 (2012), 180-185
[5] A. A. Zamyshlyaeva, Kh.M. Al-Khelli, “Ob odnoi matematicheskoi modeli sobolevskogo tipa v kvazibanakhovykh prostranstvakh”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Matematicheskoe modelirovanie i programmirovanie, 8:1 (2015), 137–142 | Zbl
[6] A.V. Keller, D.K. Al-Delfi, “Golomorfnye vyrozhdennye gruppy operatorov v kvazibanakhovykh prostranstvakh”, Vestnik YuUrGU. Seriya: Matematika. Mekhanika. Fizika, 7:1 (2015), 20-27 | Zbl
[7] A. A. Zamyshlyaeva, Kh.M. Al-Khelli, “Fazovoe prostranstvo odnogo klassa uravnenii sobolevskogo tipa vysokogo poryadka v kvazibanakhovykh prostranstvakh”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2014, no. 4, 131-138 | Zbl
[8] S.I. Kadchenko, G. A. Zakirova, “Chislennyi metod resheniya obratnykh spektralnykh zadach”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 8:3 (2015), 116-126 | Zbl