A linearized model of vibrations in the DNA molecule in the quasi-Banach spaces
Journal of computational and engineering mathematics, Tome 3 (2016) no. 1, pp. 20-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of Boussinesq equations, which simulates the vibrations in the DNA molecule, is researched in this paper. Earlier this model with a nonlinear right side was considered in a Banach space. In this paper, the model with a linear one is considered, but in quasi-Banach spaces of sequences. In the article the method of phase space and the theory of $(L,p)$-bounded operators, developed by G.A. Sviridyuk and T.G. Sukacheva for first order equations, are used. It is also based on the theory of the Cauchy problem for linear equations of Sobolev type of high order in quasi-Banach spaces. A mathematical model of vibrations in the DNA molecule is reduced to an equation of Sobolev type in a quasi-Sobolev space. We construct the phase space of a system of linear Boussinesq equations. Sufficient conditions for the solvability of the initial boundary value problem for the Boussinesq equations in terms of the theory of $(L,p)$-bounded operators are obtained.
Keywords: Sobolev type equation, quasi-Sobolev space, a mathematical model of vibrations in the DNA molecule.
@article{JCEM_2016_3_1_a2,
     author = {E. V. Bychkov and Ya. O. Al'-Ani},
     title = {A linearized model of vibrations in the {DNA} molecule in the {quasi-Banach} spaces},
     journal = {Journal of computational and engineering mathematics},
     pages = {20--26},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2016_3_1_a2/}
}
TY  - JOUR
AU  - E. V. Bychkov
AU  - Ya. O. Al'-Ani
TI  - A linearized model of vibrations in the DNA molecule in the quasi-Banach spaces
JO  - Journal of computational and engineering mathematics
PY  - 2016
SP  - 20
EP  - 26
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2016_3_1_a2/
LA  - en
ID  - JCEM_2016_3_1_a2
ER  - 
%0 Journal Article
%A E. V. Bychkov
%A Ya. O. Al'-Ani
%T A linearized model of vibrations in the DNA molecule in the quasi-Banach spaces
%J Journal of computational and engineering mathematics
%D 2016
%P 20-26
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2016_3_1_a2/
%G en
%F JCEM_2016_3_1_a2
E. V. Bychkov; Ya. O. Al'-Ani. A linearized model of vibrations in the DNA molecule in the quasi-Banach spaces. Journal of computational and engineering mathematics, Tome 3 (2016) no. 1, pp. 20-26. http://geodesic.mathdoc.fr/item/JCEM_2016_3_1_a2/

[1] P. L. Cristiansen, V. Muto, P. S. Lomdahl, “On a Toda Lattice Model with a Transversal Degree of Freedom”, Nonlinearity, 1990, no. 4, 477-501 | MR

[2] A. A. Zamyshlyaeva, E. V. Bychkov, “Fazovoe prostranstvo modifitsirovannogo uravneniya Bussineska”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, no. 18(277), 13–19 [A. A. Zamyshlyaeva, E. V. Bychkov, “The Phase Space of the Modified Boussinesq Equation”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2012, No 18(277), 13-19 ] | Zbl

[3] A. A. Zamyshlyaeva, Issledovanie odnogo klassa lineinykh uravnenii sobolevskogo tipa vysokogo poryadka, diss. kand. fiz.-mat. nauk, Chelyabinsk, 2003

[4] G. A. Sviridyuk, D. K. Al-Delfi, “Teorema o rasscheplenii v kvazibanakhovykh prostranstvakh”, Matematicheskie zametki SVFU, 20:2 (2012), 180-185

[5] A. A. Zamyshlyaeva, Kh.M. Al-Khelli, “Ob odnoi matematicheskoi modeli sobolevskogo tipa v kvazibanakhovykh prostranstvakh”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Matematicheskoe modelirovanie i programmirovanie, 8:1 (2015), 137–142 | Zbl

[6] A.V. Keller, D.K. Al-Delfi, “Golomorfnye vyrozhdennye gruppy operatorov v kvazibanakhovykh prostranstvakh”, Vestnik YuUrGU. Seriya: Matematika. Mekhanika. Fizika, 7:1 (2015), 20-27 | Zbl

[7] A. A. Zamyshlyaeva, Kh.M. Al-Khelli, “Fazovoe prostranstvo odnogo klassa uravnenii sobolevskogo tipa vysokogo poryadka v kvazibanakhovykh prostranstvakh”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2014, no. 4, 131-138 | Zbl

[8] S.I. Kadchenko, G. A. Zakirova, “Chislennyi metod resheniya obratnykh spektralnykh zadach”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 8:3 (2015), 116-126 | Zbl