On some properties of solutions to Dzektser mathematical model in quasi-Sobolev spaces
Journal of computational and engineering mathematics, Tome 2 (2015) no. 4, pp. 27-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of holomorphic degenerate semigroups of operators constructed earlier in Banach spaces and Frechet spaces is transferred to quasi-Sobolev spaces of sequences. This article contains results about existence of the exponential dichotomies of solutions to evolution Sobolev type equation in quasi-Sobolev spaces. To obtain this result we proved the relatively spectral theorem and the existence of invariant spaces of solutions. All abstract results are applied to investigation of properties of solutions to Dzektser mathematical model in quasi-Sobolev spaces. The article besides the introduction and references contains three paragraphs. In the first one, quasi-Banach spaces, quasi-Sobolev spaces and polynomials of Laplace quasi-operator are defined. Moreover the conditions for existence of degenerate holomorphic operator semigroups in quasi-Banach spaces of sequences are obtained. In other words, we state the first part of generalization of the Solomyak – Iosida theorem to quasi-Sobolev spaces of sequences. In the second paragraph the phase space of the homogeneous equation is constructed. Here we show the existence of invariant spaces of equation and get the conditions for exponential dichotomies of solutions. The last paragraph presents results on properties of solutions to Dzektser equation.
Keywords: Sobolev type equation, holomorphic degenerate semigroup, quasi-Sobolev spaces, invariant space, exponential dichotomy of solution, Dzektser mathematical model.
@article{JCEM_2015_2_4_a2,
     author = {J. K. T. Al-Isawi},
     title = {On some properties of solutions to {Dzektser} mathematical model in {quasi-Sobolev} spaces},
     journal = {Journal of computational and engineering mathematics},
     pages = {27--36},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a2/}
}
TY  - JOUR
AU  - J. K. T. Al-Isawi
TI  - On some properties of solutions to Dzektser mathematical model in quasi-Sobolev spaces
JO  - Journal of computational and engineering mathematics
PY  - 2015
SP  - 27
EP  - 36
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a2/
LA  - en
ID  - JCEM_2015_2_4_a2
ER  - 
%0 Journal Article
%A J. K. T. Al-Isawi
%T On some properties of solutions to Dzektser mathematical model in quasi-Sobolev spaces
%J Journal of computational and engineering mathematics
%D 2015
%P 27-36
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a2/
%G en
%F JCEM_2015_2_4_a2
J. K. T. Al-Isawi. On some properties of solutions to Dzektser mathematical model in quasi-Sobolev spaces. Journal of computational and engineering mathematics, Tome 2 (2015) no. 4, pp. 27-36. http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a2/

[1] G. A. Sviridyuk, “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 47–74 | DOI | MR | Zbl

[2] G. A. Sviridyuk, S. A. Zagrebina, “Nonclassical Models of Mathematical Physics”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 14:40 (299) (2012), 7–18 | Zbl

[3] G. A. Sviridyuk, “Solutions Manifolds of One Class of Evolution and Dynamical Equations”, Doklady Academii Nauk, 304:2 (1989), 301–304 | MR | Zbl

[4] G. A. Sviridyuk, M. V. Sukhanova, “Solvability of the Cauchy Problem for Linear Singular Evolution Type Equations”, Differential Equations, 28:3 (1992), 323–330 | MR

[5] G. A. Sviridyuk, “Phase Spaces of Semilinear Sobolev Type Equations with Relatively Strongly Sectorial Operator”, St. Petersburg Mathematical Journal, 6:5 (1994), 252–272 | MR

[6] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216 pp. | MR | Zbl

[7] A. A. Zamyshlyaeva, Linear Sobolev Type Equations of High Order, Publishing center of SUSU, Chelyabinsk, 2012, 107 pp. | MR

[8] N. A. Manakova, Problems of Optimal Control for the Semilinear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012, 88 pp. | MR

[9] S. A. Sagadeeva, Dihotomies of Solutions to Linear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012, 107 pp.

[10] J. K. Al-Delfi, “Quasi-Sobolev Spaces $\ell _{p}^{m}$”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 5:1 (2013), 107–109 | Zbl

[11] G. A. Sviridyuk, A. V. Keller, “Invariant Spaces and Dichotomies of Solutions of a Class of Linear Equations of Sobolev Type”, Russian Mathematics, 1997, no. 5, 60–68 | MR | Zbl

[12] A. A. Zamyshlyaeva, J. K. Al-Isawi, “Holomorphic Degenerate Operator Semigroups and Evolution Sobolev Type Equations in Quasi-Banach Spaces of Sequences”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 7:4 (2015), 31–40

[13] A. A. Zamyshlyaeva, J. K. Al-Isawi, “On Some Properties of Solutions to One Class of Evolution Sobolev Type Mathematical Models in Quasi-Sobolev Spacesposledovatelnostei”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:4 (2015), 113–119 | Zbl