Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2015_2_4_a2, author = {J. K. T. Al-Isawi}, title = {On some properties of solutions to {Dzektser} mathematical model in {quasi-Sobolev} spaces}, journal = {Journal of computational and engineering mathematics}, pages = {27--36}, publisher = {mathdoc}, volume = {2}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a2/} }
TY - JOUR AU - J. K. T. Al-Isawi TI - On some properties of solutions to Dzektser mathematical model in quasi-Sobolev spaces JO - Journal of computational and engineering mathematics PY - 2015 SP - 27 EP - 36 VL - 2 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a2/ LA - en ID - JCEM_2015_2_4_a2 ER -
%0 Journal Article %A J. K. T. Al-Isawi %T On some properties of solutions to Dzektser mathematical model in quasi-Sobolev spaces %J Journal of computational and engineering mathematics %D 2015 %P 27-36 %V 2 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a2/ %G en %F JCEM_2015_2_4_a2
J. K. T. Al-Isawi. On some properties of solutions to Dzektser mathematical model in quasi-Sobolev spaces. Journal of computational and engineering mathematics, Tome 2 (2015) no. 4, pp. 27-36. http://geodesic.mathdoc.fr/item/JCEM_2015_2_4_a2/
[1] G. A. Sviridyuk, “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 47–74 | DOI | MR | Zbl
[2] G. A. Sviridyuk, S. A. Zagrebina, “Nonclassical Models of Mathematical Physics”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 14:40 (299) (2012), 7–18 | Zbl
[3] G. A. Sviridyuk, “Solutions Manifolds of One Class of Evolution and Dynamical Equations”, Doklady Academii Nauk, 304:2 (1989), 301–304 | MR | Zbl
[4] G. A. Sviridyuk, M. V. Sukhanova, “Solvability of the Cauchy Problem for Linear Singular Evolution Type Equations”, Differential Equations, 28:3 (1992), 323–330 | MR
[5] G. A. Sviridyuk, “Phase Spaces of Semilinear Sobolev Type Equations with Relatively Strongly Sectorial Operator”, St. Petersburg Mathematical Journal, 6:5 (1994), 252–272 | MR
[6] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216 pp. | MR | Zbl
[7] A. A. Zamyshlyaeva, Linear Sobolev Type Equations of High Order, Publishing center of SUSU, Chelyabinsk, 2012, 107 pp. | MR
[8] N. A. Manakova, Problems of Optimal Control for the Semilinear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012, 88 pp. | MR
[9] S. A. Sagadeeva, Dihotomies of Solutions to Linear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012, 107 pp.
[10] J. K. Al-Delfi, “Quasi-Sobolev Spaces $\ell _{p}^{m}$”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 5:1 (2013), 107–109 | Zbl
[11] G. A. Sviridyuk, A. V. Keller, “Invariant Spaces and Dichotomies of Solutions of a Class of Linear Equations of Sobolev Type”, Russian Mathematics, 1997, no. 5, 60–68 | MR | Zbl
[12] A. A. Zamyshlyaeva, J. K. Al-Isawi, “Holomorphic Degenerate Operator Semigroups and Evolution Sobolev Type Equations in Quasi-Banach Spaces of Sequences”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 7:4 (2015), 31–40
[13] A. A. Zamyshlyaeva, J. K. Al-Isawi, “On Some Properties of Solutions to One Class of Evolution Sobolev Type Mathematical Models in Quasi-Sobolev Spacesposledovatelnostei”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:4 (2015), 113–119 | Zbl