The numerical solution of the problems of optimal control to nonstationary Sobolev type model in relatively radial case
Journal of computational and engineering mathematics, Tome 2 (2015) no. 3, pp. 65-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the existence of a unique optimal and hard control over solutions of Showalter – Sidorov problem for nonstationary model, which is described by Sobolev type equations. In this case, one of the operators in the equation is multiplied by a scalar function of the time-variable, besides stationary equation has a strong continuous degenerate resolving semigroup of operators.
Keywords: optimal control, Sobolev-type equations, relatively radial operator.
@article{JCEM_2015_2_3_a6,
     author = {A. N. Shulepov},
     title = {The numerical solution of the problems of optimal control to nonstationary {Sobolev} type model in relatively radial case},
     journal = {Journal of computational and engineering mathematics},
     pages = {65--71},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a6/}
}
TY  - JOUR
AU  - A. N. Shulepov
TI  - The numerical solution of the problems of optimal control to nonstationary Sobolev type model in relatively radial case
JO  - Journal of computational and engineering mathematics
PY  - 2015
SP  - 65
EP  - 71
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a6/
LA  - en
ID  - JCEM_2015_2_3_a6
ER  - 
%0 Journal Article
%A A. N. Shulepov
%T The numerical solution of the problems of optimal control to nonstationary Sobolev type model in relatively radial case
%J Journal of computational and engineering mathematics
%D 2015
%P 65-71
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a6/
%G en
%F JCEM_2015_2_3_a6
A. N. Shulepov. The numerical solution of the problems of optimal control to nonstationary Sobolev type model in relatively radial case. Journal of computational and engineering mathematics, Tome 2 (2015) no. 3, pp. 65-71. http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a6/

[1] M. A. Sagadeeva, A. N. Shulepov, “On a Non-Linear Model Based on the Relative Radial Equation of Sobolev Type”, Bulletin of Odessa National University. Mathematics and Mechanics, 18:2 (18) (2013), 35–43

[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216 pp. | MR | Zbl

[3] M. A. Sagadeeva, Investigation of Solutions Stability for Linear Sobolev Type Equations, dis. ...kand.fiz.-mat. sciences, Chelyabinsk, 2006, 119 pp.

[4] G. A. Sviridyuk, A. A. Efremov, “An Optimal Control Problem for a Class of Linear Equations of Sobolev Type”, Izvestiya VUZ. Matematika, 40:12 (1996), 75–83 | MR | Zbl

[5] A. L. Shestakov, G. A. Sviridyuk, M. A. Sagadeeva, “Reconstruction of a Dynamically Distorted Signal with Respect to the Measure Tranducer Degradation”, Applied Mathematical Sciences, 8:41–44 (2014), 2125–2130 | DOI

[6] G. A. Sviridyuk, S. A. Zagrebina, “Showalter – Sidorov Problem as a Phenomenon of Sobolev Type Equations”, The Bulletin of Irkutsk State University. Series: Mathematics, 3:1 (2010), 104–125 | MR | Zbl

[7] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York–Basel–Hong Kong, 1999, 336 pp. | MR | Zbl

[8] G. A. Sviridyuk, A. N. Shulepov, “The Problem of Optimal and Hard Control Solutions of a Special Type of Non-Stationary Equations of Sobolev Type”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2014, no. 2 (35), 33–38 | DOI

[9] G. A. Sviridyuk, A. N. Shulepov, “Approximation of Degenerate $C_0$-Semigroup”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6:2 (2013), 133–137 | Zbl