Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2015_2_3_a3, author = {F. L. Hasan}, title = {Solvability of initial problems for one class of dynamical equations in {quasi-Sobolev} spaces}, journal = {Journal of computational and engineering mathematics}, pages = {34--42}, publisher = {mathdoc}, volume = {2}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a3/} }
TY - JOUR AU - F. L. Hasan TI - Solvability of initial problems for one class of dynamical equations in quasi-Sobolev spaces JO - Journal of computational and engineering mathematics PY - 2015 SP - 34 EP - 42 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a3/ LA - en ID - JCEM_2015_2_3_a3 ER -
%0 Journal Article %A F. L. Hasan %T Solvability of initial problems for one class of dynamical equations in quasi-Sobolev spaces %J Journal of computational and engineering mathematics %D 2015 %P 34-42 %V 2 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a3/ %G en %F JCEM_2015_2_3_a3
F. L. Hasan. Solvability of initial problems for one class of dynamical equations in quasi-Sobolev spaces. Journal of computational and engineering mathematics, Tome 2 (2015) no. 3, pp. 34-42. http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a3/
[1] Dzh. K. Al-Delfi, “Kvazioperator Laplasa v kvazisobolevykh prostranstvakh”, Vestnik SamGTU. Seriya: Fiz.-mat. nauki, 2013, no. 2 (13), 13–16 | DOI | Zbl
[2] Dzh. K. Al-Delfi, “Kvazisobolevy prostranstva $l_p^m$”, Vestnik YuUrGU. Seriya: Matematika. Mekhanika. Fizika, 5:1 (2013), 107–109
[3] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216 pp. | MR | Zbl
[4] A. V. Keller, Dzh. K. Al-Delfi, “Golomorfnye vyrozhdennye gruppy operatorov v kvazibanakhovykh prostranstvakh”, Vestnik YuUrGU. Seriya: Matematika. Mekhanika. Fizika, 7:1 (2015), 20–27 | Zbl
[5] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Shouoltera–Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 3:1 (2010), 104–125 | MR | Zbl
[6] F. L. Khasan, “Otnositelno spektralnaya teorema v kvazibanakhovykh prostranstvakh”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina - 2014, Materialy mezhdunarodnoi konferentsii (Voronezh, 2014), Izdatelsko-poligraficheskii tsentr “Nauchnaya kniga”, Voronezh, 2014, 36–39
[7] N. A. Hoff, “Greep Buckling”, Journal of the Aeronautical Sciences, 7:1 (1965), 1–20
[8] A. V. Keller, A. A. Zamyshlyaeva, M. A. Sagadeeva, “On Integration in Quasi-Banach Spaces of Sequences”, Journal of Computational and Engineering Mathematics, 2:1 (2015), 52–56 | DOI | Zbl
[9] M. A. Sagadeeva, A. S. Rashid, “Existence of Solutions in Quasi-Banach Spaces for Evolutionary Sobolev Type Equations in Relatively Radial Case”, Journal of Computational and Engineering Mathematics, 2:2 (2015), 71–81 | DOI
[10] G. A. Sviridyuk, M. M. Yakupov, “The Phase Space of an Initial-Boundary Value Problem for the Oskolkov System”, Differential Equation, 32:11 (1996), 1535–1540 | MR | Zbl
[11] G. A. Sviridyuk, V. O. Kazak, “Fazovoe prostranstvo nachalno-kraevoi zadachi dlya uravneniya Khoffa”, Matematicheskie zametki, 71:2 (2002), 292–296 | DOI | MR
[12] G. A. Sviridyuk, V. V. Shemetova, “Ob uravneniyakh Khoffa na grafakh”, Matematicheskoe modelirovanie i kraevye zadachi, Trudy konferentsii (Samara, 2003), Izd-vo SamGTU, Samara, 2003, 149–151