Solvability of initial problems for one class of dynamical equations in quasi-Sobolev spaces
Journal of computational and engineering mathematics, Tome 2 (2015) no. 3, pp. 34-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equations, which are not solved with respect to the highest derivative, are now actively studied. Such equations are also called the Sobolev type equations. Note that these equations in Banach spaces are studied quite well. Quasi-Sobolev spaces are quasi normalized complete spaces of sequences. Recently these spaces began to be studied. The interest to such spaces and its equations is connected with a desire to fill up the theory more than with practical applications. The paper is devoted to the study of solvability of the Cauchy problem and the Showalter – Sidorov problem for a class of equations considered in the quasi-Sobolev spases. To this end we use properties of the equation operators, namely the relative boundedness of the operators. To illustrate abstract results we consider an analogue of the Hoff equation in the quasi-Sobolev spaces.
Keywords: Cauchy problem, Showalter – Sidorov problem, Sobolev type equation, Laplase quasi-operator, analogue of the Hoff equation.
@article{JCEM_2015_2_3_a3,
     author = {F. L. Hasan},
     title = {Solvability of initial problems for one class of dynamical equations in {quasi-Sobolev} spaces},
     journal = {Journal of computational and engineering mathematics},
     pages = {34--42},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a3/}
}
TY  - JOUR
AU  - F. L. Hasan
TI  - Solvability of initial problems for one class of dynamical equations in quasi-Sobolev spaces
JO  - Journal of computational and engineering mathematics
PY  - 2015
SP  - 34
EP  - 42
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a3/
LA  - en
ID  - JCEM_2015_2_3_a3
ER  - 
%0 Journal Article
%A F. L. Hasan
%T Solvability of initial problems for one class of dynamical equations in quasi-Sobolev spaces
%J Journal of computational and engineering mathematics
%D 2015
%P 34-42
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a3/
%G en
%F JCEM_2015_2_3_a3
F. L. Hasan. Solvability of initial problems for one class of dynamical equations in quasi-Sobolev spaces. Journal of computational and engineering mathematics, Tome 2 (2015) no. 3, pp. 34-42. http://geodesic.mathdoc.fr/item/JCEM_2015_2_3_a3/

[1] Dzh. K. Al-Delfi, “Kvazioperator Laplasa v kvazisobolevykh prostranstvakh”, Vestnik SamGTU. Seriya: Fiz.-mat. nauki, 2013, no. 2 (13), 13–16 | DOI | Zbl

[2] Dzh. K. Al-Delfi, “Kvazisobolevy prostranstva $l_p^m$”, Vestnik YuUrGU. Seriya: Matematika. Mekhanika. Fizika, 5:1 (2013), 107–109

[3] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216 pp. | MR | Zbl

[4] A. V. Keller, Dzh. K. Al-Delfi, “Golomorfnye vyrozhdennye gruppy operatorov v kvazibanakhovykh prostranstvakh”, Vestnik YuUrGU. Seriya: Matematika. Mekhanika. Fizika, 7:1 (2015), 20–27 | Zbl

[5] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Shouoltera–Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 3:1 (2010), 104–125 | MR | Zbl

[6] F. L. Khasan, “Otnositelno spektralnaya teorema v kvazibanakhovykh prostranstvakh”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina - 2014, Materialy mezhdunarodnoi konferentsii (Voronezh, 2014), Izdatelsko-poligraficheskii tsentr “Nauchnaya kniga”, Voronezh, 2014, 36–39

[7] N. A. Hoff, “Greep Buckling”, Journal of the Aeronautical Sciences, 7:1 (1965), 1–20

[8] A. V. Keller, A. A. Zamyshlyaeva, M. A. Sagadeeva, “On Integration in Quasi-Banach Spaces of Sequences”, Journal of Computational and Engineering Mathematics, 2:1 (2015), 52–56 | DOI | Zbl

[9] M. A. Sagadeeva, A. S. Rashid, “Existence of Solutions in Quasi-Banach Spaces for Evolutionary Sobolev Type Equations in Relatively Radial Case”, Journal of Computational and Engineering Mathematics, 2:2 (2015), 71–81 | DOI

[10] G. A. Sviridyuk, M. M. Yakupov, “The Phase Space of an Initial-Boundary Value Problem for the Oskolkov System”, Differential Equation, 32:11 (1996), 1535–1540 | MR | Zbl

[11] G. A. Sviridyuk, V. O. Kazak, “Fazovoe prostranstvo nachalno-kraevoi zadachi dlya uravneniya Khoffa”, Matematicheskie zametki, 71:2 (2002), 292–296 | DOI | MR

[12] G. A. Sviridyuk, V. V. Shemetova, “Ob uravneniyakh Khoffa na grafakh”, Matematicheskoe modelirovanie i kraevye zadachi, Trudy konferentsii (Samara, 2003), Izd-vo SamGTU, Samara, 2003, 149–151