Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2015_2_2_a3, author = {S. I. Ebel}, title = {Numerical research of degenerate dynamic balance model of the cell cycle}, journal = {Journal of computational and engineering mathematics}, pages = {25--38}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2015_2_2_a3/} }
TY - JOUR AU - S. I. Ebel TI - Numerical research of degenerate dynamic balance model of the cell cycle JO - Journal of computational and engineering mathematics PY - 2015 SP - 25 EP - 38 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2015_2_2_a3/ LA - en ID - JCEM_2015_2_2_a3 ER -
S. I. Ebel. Numerical research of degenerate dynamic balance model of the cell cycle. Journal of computational and engineering mathematics, Tome 2 (2015) no. 2, pp. 25-38. http://geodesic.mathdoc.fr/item/JCEM_2015_2_2_a3/
[1] G. A. Sviridyuk, S. A. Zagrebina, “The Showalter - Sidorov Problem as Phenomena of the Sobolev-Type Equations”, The Bulletin of Irkutsk State University. Series: Mathematics, 3:1 (2010), 104–125 | MR | Zbl
[2] S. A. Zagrebina, “On the Showalter - Sidorov problem”, Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 3, 22–28 | MR | Zbl
[3] A. A. Zamyshlyaeva, “Mathematical models of high-order Sobolev type”, The Bulletin of South Ural State University. Series: Mathematical modeling and programming, 7:2 (2014), 5–28 | Zbl
[4] M. A. Sagadeeva, “A Existance and a Stability of Solutions for Semilinear Sobolev Type Equations in Relatively Radial Case”, The Bulletin of Irkutsk State University. Series: Mathematics, 6:1 (2013), 78–88 | Zbl
[5] N. A. Makarov, E. A. Bogonos, “Optimal control problem solutions Showalter - Sidorov for a Sobolev-type equation”, The Bulletin of Irkutsk State University. Series: Mathematics, 3:1 (2010), 42–53
[6] G. A. Sviridyuk, S. V. Brychev, “Numerical Solution of Systems of Equations of Leontieff Type”, Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 8, 46–52 | MR | Zbl
[7] I. V. Burlachko, G. A. Sviridyuk, “On the Numerical Solution of the Cauchy Problem for a Degenerate Linear System of Ordinary Differential Equations”, Tambov University Reports. Series: Natural and Technical Sciences, 8:3 (2003), 353
[8] A. V. Keller, T. A. Shishkina, “The Method of Constructing Dynamic and Static Balance Models at the Enterprise Level”, The Bulletin of the South Ural State University. Series: Economics and Management, 7:3 (2013), 6–10
[9] A. L. Shestakov, G. A. Sviridyuk, “A new approach to the measurement of dynamically distorted signals”, The Bulletin of South Ural State University. Series: Mathematical modeling and programming, 2010, no. 16 (192), 116–120 | Zbl
[10] A. V. Keller, E. I. Nazarova, “Properties regularizability and numerical solution of dynamic measurement”, The Bulletin of South Ural State University. Series: Mathematical modeling and programming, 2010, no. 16 (192), 32–38 | Zbl
[11] A. L. Shestakov, G. A. Sviridyuk, Yu. V. Khudyakov, “Dynamic measurements in " noise " spaces”, The Bulletin of South Ural State University. Series: Computer technology, Management, Electronics, 13:2 (2013), 4–11
[12] N. D. Gernet, “Carrying a Dynamic Model of the Cell Cycle”, Eastern-European Journal of Enterprise Technologies, 6:4 (66) (2013), 42–47
[13] V. V. Leontieff, Interindustry Economics, Ekonomika, Moscow, 1997
[14] L. V. Vysotskaya, “Mitotic Cycle and its Regulation”, The Vavilov Journal of Genetics and Breeding, 18:1 (2014), 81–92
[15] E. I. Antonova, D. I. Berkova, L. E. Sagalbaeva, O. J. Shpak, “The Dynamics of Cellular Cycle Indices of Ecto- and Endothermic Animals”, Journal of New Medical Technologies, 18:2 (2011), 18–20 | MR
[16] A. V. Keller, S. I. Ebel, “About Degenerate Discrete Dynamic Model of the Balance of the Cell Cycle”, Yuzhno-Uralskaya Molodezhnaya Shkola po Matematicheskomu Modelirovaniyu (Chelyabinsk, 29-30 May), Publishing center of SUSU, Chelyabinsk, 2014, 74–79
[17] A. V. Keller, “The algorithm for solving the problem Showalter - Sidorov for Leontief type models”, The Bulletin of South Ural State University. Series: Mathematical modeling and programming, 2011, no. 4 (221), 40–46 | Zbl