Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2014_1_2_a2, author = {A. V. Belov and S. Roper}, title = {Uzawa algorithm implementation for steady incompressible {Newtonian} liquids}, journal = {Journal of computational and engineering mathematics}, pages = {26--31}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2014_1_2_a2/} }
TY - JOUR AU - A. V. Belov AU - S. Roper TI - Uzawa algorithm implementation for steady incompressible Newtonian liquids JO - Journal of computational and engineering mathematics PY - 2014 SP - 26 EP - 31 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2014_1_2_a2/ LA - en ID - JCEM_2014_1_2_a2 ER -
A. V. Belov; S. Roper. Uzawa algorithm implementation for steady incompressible Newtonian liquids. Journal of computational and engineering mathematics, Tome 1 (2014) no. 2, pp. 26-31. http://geodesic.mathdoc.fr/item/JCEM_2014_1_2_a2/
[1] C. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics, Springer-Verlag, Berlin, 2004, xxx+602 pp. | DOI | MR
[2] K. R. Rajagopal, “On Boundary Conditions for Fluids of the Differential Type”, Navier – Stokes Equations and Related Nonlinear Problems, Springer US, New York, 1995, 273–278 | DOI | MR
[3] K. R. Rajagopal, P. N. Kaloni, “Some Remarks on Boundary Conditions for Flows of Fluids of the differential type”, Continuum Mechanics and its Applications, Hemisphere, New York, 1989, 935–942 | MR
[4] R. S. Rivlin, J.L. Ericksen, “Stress-deformation relations for isotropic materials”, J. Rational Mech. Anal., 4 (1955), 323–425 | DOI | MR | Zbl
[5] R. Temam, Navier – Stokes Equations, North Holland Press, Amsterdam – New York, 1979, xvi+454 pp. | MR | Zbl
[6] K. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Non-Linear Programming, Stanford University Press, Stanford, 1958, 229 pp. | MR | Zbl