Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JCEM_2014_1_1_a4, author = {M. A. Sagadeeva}, title = {The numerical solution to the optimal control problem for the nonstationary {Dzektser} model}, journal = {Journal of computational and engineering mathematics}, pages = {46--54}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a4/} }
TY - JOUR AU - M. A. Sagadeeva TI - The numerical solution to the optimal control problem for the nonstationary Dzektser model JO - Journal of computational and engineering mathematics PY - 2014 SP - 46 EP - 54 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a4/ LA - en ID - JCEM_2014_1_1_a4 ER -
%0 Journal Article %A M. A. Sagadeeva %T The numerical solution to the optimal control problem for the nonstationary Dzektser model %J Journal of computational and engineering mathematics %D 2014 %P 46-54 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a4/ %G en %F JCEM_2014_1_1_a4
M. A. Sagadeeva. The numerical solution to the optimal control problem for the nonstationary Dzektser model. Journal of computational and engineering mathematics, Tome 1 (2014) no. 1, pp. 46-54. http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a4/
[1] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, viii+216 pp. | MR | Zbl
[2] E. S. Dzektser, “Obobschennye uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, DAN SSSR, 202:5 (1972), 1031–1033 | Zbl
[3] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-order Derivative, Marcel Dekker Inc., New York–Basel–Hong Kong, 2003, xvi+490 pp. | MR | Zbl
[4] G. A. Sviridyuk, S. A. Zagrebina, “Neklassicheskie modeli matematicheskoi fiziki”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 14, 7–18 | Zbl
[5] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Shouoltera–Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 3:1 (2010), 104–125 | MR | Zbl
[6] A. L. Shestakov, A. V. Keller, E. I. Nazarova, “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl
[7] N. A. Manakova, Zadachi optimalnogo upravleniya dlya polulineinykh uravnenii sobolevskogo tipa, Izd. tsentr YuUrGU, Chelyabinsk, 2012, 139 pp. | MR
[8] G. A. Sviridyuk , N. A. Manakova, “An Optimal Control Problem for the Hoff Equation”, Journal of Applied and Industrial Mathematics, 1:2 (2007), 247–253 | DOI | MR
[9] A. A. Zamyshlyaeva, O. N. Tsyplenkova, “Optimal Control of Solutions of the Showalter–Sidorov–Dirichlet Problem for the Boussinesq–Löve Equation”, Differential Equations, 49:11 (2013), 1356–1365 | DOI | DOI | MR | Zbl
[10] M. A. Sagadeeva, A. D. Badoyan, “The Problem of Optimal Control over Solutions of the Nonstationary Barenblatt – Zheltov – Kochina Model”, Bulletin of the South Ural State University. Series «Computer technologies, automatic control radioelectronics», 14:2 (2014), 5–11
[11] M. A. Sagadeeva, A. D. Badoyan, “Optimalnoe upravlenie resheniyami nestatsionarnykh uravnenii sobolevskogo tipa spetsialnogo vida v otnositelno sektorialnom sluchae”, Vestnik MaGU. Matematika, 2013, no. 15, 68–80, MaGU, Magnitogorsk
[12] A. V. Keller, M. A. Sagadeeva, “Chislennoe reshenie zadach optimalnogo i zhestkogo upravleniya dlya odnoi nestatsionarnoi sistemy leontevskogo tipa”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 32:19 (2013), 57–66