The numerical solution to the optimal control problem for the nonstationary Dzektser model
Journal of computational and engineering mathematics, Tome 1 (2014) no. 1, pp. 46-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Of concern is a numerical solution to the optimal control problem for the operator-differential equation, unsolved with respect to the derivative by time, with Showalter – Sidorov condition. Such equations are called Sobolev type equations. Sobolev type equations now constitute a vast area of nonclassical equations of mathematical physics. So in this article we construct a numerical solution to the optimal control problem for the nonstationary Dzektser model with Showalter – Sidorov condition. Besides the introduction and bibliography article comprises three parts. The first part provides essential information regarding the theory of relatively $p$-sectorial operators. Also in this part the existence of solutions for optimal control problem with Showalter – Sidorov condition. The optimal control problem over solutions of Dzektser model is described in the second part. The third one contains the results of the numerical solution of optimal control problem for Dzektser model considered on a rectangle.
Keywords: non-stationary Sobolev type equation, the optimal control problem, Showalter – Sidorov condition, Dzektser model.
@article{JCEM_2014_1_1_a4,
     author = {M. A. Sagadeeva},
     title = {The numerical solution to the optimal control problem for the nonstationary {Dzektser} model},
     journal = {Journal of computational and engineering mathematics},
     pages = {46--54},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a4/}
}
TY  - JOUR
AU  - M. A. Sagadeeva
TI  - The numerical solution to the optimal control problem for the nonstationary Dzektser model
JO  - Journal of computational and engineering mathematics
PY  - 2014
SP  - 46
EP  - 54
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a4/
LA  - en
ID  - JCEM_2014_1_1_a4
ER  - 
%0 Journal Article
%A M. A. Sagadeeva
%T The numerical solution to the optimal control problem for the nonstationary Dzektser model
%J Journal of computational and engineering mathematics
%D 2014
%P 46-54
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a4/
%G en
%F JCEM_2014_1_1_a4
M. A. Sagadeeva. The numerical solution to the optimal control problem for the nonstationary Dzektser model. Journal of computational and engineering mathematics, Tome 1 (2014) no. 1, pp. 46-54. http://geodesic.mathdoc.fr/item/JCEM_2014_1_1_a4/

[1] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, viii+216 pp. | MR | Zbl

[2] E. S. Dzektser, “Obobschennye uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, DAN SSSR, 202:5 (1972), 1031–1033 | Zbl

[3] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-order Derivative, Marcel Dekker Inc., New York–Basel–Hong Kong, 2003, xvi+490 pp. | MR | Zbl

[4] G. A. Sviridyuk, S. A. Zagrebina, “Neklassicheskie modeli matematicheskoi fiziki”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 14, 7–18 | Zbl

[5] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Shouoltera–Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 3:1 (2010), 104–125 | MR | Zbl

[6] A. L. Shestakov, A. V. Keller, E. I. Nazarova, “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl

[7] N. A. Manakova, Zadachi optimalnogo upravleniya dlya polulineinykh uravnenii sobolevskogo tipa, Izd. tsentr YuUrGU, Chelyabinsk, 2012, 139 pp. | MR

[8] G. A. Sviridyuk , N. A. Manakova, “An Optimal Control Problem for the Hoff Equation”, Journal of Applied and Industrial Mathematics, 1:2 (2007), 247–253 | DOI | MR

[9] A. A. Zamyshlyaeva, O. N. Tsyplenkova, “Optimal Control of Solutions of the Showalter–Sidorov–Dirichlet Problem for the Boussinesq–Löve Equation”, Differential Equations, 49:11 (2013), 1356–1365 | DOI | DOI | MR | Zbl

[10] M. A. Sagadeeva, A. D. Badoyan, “The Problem of Optimal Control over Solutions of the Nonstationary Barenblatt – Zheltov – Kochina Model”, Bulletin of the South Ural State University. Series «Computer technologies, automatic control radioelectronics», 14:2 (2014), 5–11

[11] M. A. Sagadeeva, A. D. Badoyan, “Optimalnoe upravlenie resheniyami nestatsionarnykh uravnenii sobolevskogo tipa spetsialnogo vida v otnositelno sektorialnom sluchae”, Vestnik MaGU. Matematika, 2013, no. 15, 68–80, MaGU, Magnitogorsk

[12] A. V. Keller, M. A. Sagadeeva, “Chislennoe reshenie zadach optimalnogo i zhestkogo upravleniya dlya odnoi nestatsionarnoi sistemy leontevskogo tipa”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 32:19 (2013), 57–66