Directional Hölder Metric Subregularity and Application to Tangent Cones
Journal of convex analysis, Tome 24 (2017) no. 2, pp. 417-457
We study directional versions of the Hölderian/Lipschitzian metric subregularity of multifunctions. Firstly, we establish variational characterizations of the Hölderian/Lipschitzian directional metric subregularity by means of the strong slopes and next of mixed tangency-coderivative objects. By product, we give second-order conditions for the directional Lipschitzian metric subregularity and for the directional metric subregularity of demi order. An application of the directional metric subregularity to study the tangent cone is discussed.
Classification :
49J52, 49J53, 58C06, 47H04, 54C60, 90C30
Mots-clés : Error bound, generalized equation, metric subregularity, Hölder metric subregularity, directional Hölder metric subregularity, coderivative
Mots-clés : Error bound, generalized equation, metric subregularity, Hölder metric subregularity, directional Hölder metric subregularity, coderivative
@article{JCA_2017_24_2_JCA_2017_24_2_a4,
author = {H. V. Ngai and N. H. Tron and P. N. Tinh},
title = {Directional {H\"older} {Metric} {Subregularity} and {Application} to {Tangent} {Cones}},
journal = {Journal of convex analysis},
pages = {417--457},
year = {2017},
volume = {24},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2017_24_2_JCA_2017_24_2_a4/}
}
TY - JOUR AU - H. V. Ngai AU - N. H. Tron AU - P. N. Tinh TI - Directional Hölder Metric Subregularity and Application to Tangent Cones JO - Journal of convex analysis PY - 2017 SP - 417 EP - 457 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/JCA_2017_24_2_JCA_2017_24_2_a4/ ID - JCA_2017_24_2_JCA_2017_24_2_a4 ER -
H. V. Ngai; N. H. Tron; P. N. Tinh. Directional Hölder Metric Subregularity and Application to Tangent Cones. Journal of convex analysis, Tome 24 (2017) no. 2, pp. 417-457. http://geodesic.mathdoc.fr/item/JCA_2017_24_2_JCA_2017_24_2_a4/