Refinements of the Brunn-Minkowski Inequality
Journal of convex analysis, Tome 21 (2014) no. 3, pp. 727-743
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\vol{\mathrm{vol}} The Brunn-Minkowski theorem says that $\vol\bigl((1-\lambda)K+\lambda L\bigr)^{1/n}$, for $K,L$ convex bodies, is a concave function in $\lambda$, and assuming a common hyperplane projection of $K$ and $L$, it was proved that the volume itself is concave. In this paper we study refinements of Brunn-Minkowski inequality, in the sense of `enhancing' the exponent, either when a common projection onto an ($n-k$)-plane is assumed or for particular families of sets. In the first case, we show that the expected result of concavity for the $k$-th root of the volume is not true, although other Brunn-Minkowski type inequalities can be obtained under the ($n-k$)-projection hypothesis. In the second case, we show that for $p$-tangential bodies, the exponent in Brunn-Minkowski inequality can be replaced by $1/p$.
Classification :
52A20, 52A40, 52A39
Mots-clés : Brunn-Minkowski inequality, projections, p-tangential bodies
Mots-clés : Brunn-Minkowski inequality, projections, p-tangential bodies
@article{JCA_2014_21_3_JCA_2014_21_3_a7,
author = {M. A. Hern\'andez Cifre and J. Yepes Nicol\'as},
title = {Refinements of the {Brunn-Minkowski} {Inequality}},
journal = {Journal of convex analysis},
pages = {727--743},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a7/}
}
TY - JOUR AU - M. A. Hernández Cifre AU - J. Yepes Nicolás TI - Refinements of the Brunn-Minkowski Inequality JO - Journal of convex analysis PY - 2014 SP - 727 EP - 743 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a7/ ID - JCA_2014_21_3_JCA_2014_21_3_a7 ER -
M. A. Hernández Cifre; J. Yepes Nicolás. Refinements of the Brunn-Minkowski Inequality. Journal of convex analysis, Tome 21 (2014) no. 3, pp. 727-743. http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a7/