Sufficient Conditions for an Existence of a Solution to a Differential Inclusion
Journal of convex analysis, Tome 21 (2014) no. 3, pp. 715-726.

Voir la notice de l'article provenant de la source Heldermann Verlag

We formulate geometric conditions induced by the compact set $K\subset\mathbb{R}^{m\times n}$, which imply existence of a Lipschitz solution $u$ to the differential inclusion $Du\in K$. The solutions are obtained using the convex integration method. We illustrate our result for the known example $K=SO(2)\cup SO(2)B$, where $B$ is a $2\times2$ diagonal matrix with $\det B=1$.
@article{JCA_2014_21_3_JCA_2014_21_3_a6,
     author = {W. Pompe},
     title = {Sufficient {Conditions} for an {Existence} of a {Solution} to a {Differential} {Inclusion}},
     journal = {Journal of convex analysis},
     pages = {715--726},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a6/}
}
TY  - JOUR
AU  - W. Pompe
TI  - Sufficient Conditions for an Existence of a Solution to a Differential Inclusion
JO  - Journal of convex analysis
PY  - 2014
SP  - 715
EP  - 726
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a6/
ID  - JCA_2014_21_3_JCA_2014_21_3_a6
ER  - 
%0 Journal Article
%A W. Pompe
%T Sufficient Conditions for an Existence of a Solution to a Differential Inclusion
%J Journal of convex analysis
%D 2014
%P 715-726
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a6/
%F JCA_2014_21_3_JCA_2014_21_3_a6
W. Pompe. Sufficient Conditions for an Existence of a Solution to a Differential Inclusion. Journal of convex analysis, Tome 21 (2014) no. 3, pp. 715-726. http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a6/