Sufficient Conditions for an Existence of a Solution to a Differential Inclusion
Journal of convex analysis, Tome 21 (2014) no. 3, pp. 715-726
Voir la notice de l'article provenant de la source Heldermann Verlag
We formulate geometric conditions induced by the compact set $K\subset\mathbb{R}^{m\times n}$, which imply existence of a Lipschitz solution $u$ to the differential inclusion $Du\in K$. The solutions are obtained using the convex integration method. We illustrate our result for the known example $K=SO(2)\cup SO(2)B$, where $B$ is a $2\times2$ diagonal matrix with $\det B=1$.
@article{JCA_2014_21_3_JCA_2014_21_3_a6,
author = {W. Pompe},
title = {Sufficient {Conditions} for an {Existence} of a {Solution} to a {Differential} {Inclusion}},
journal = {Journal of convex analysis},
pages = {715--726},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a6/}
}
TY - JOUR AU - W. Pompe TI - Sufficient Conditions for an Existence of a Solution to a Differential Inclusion JO - Journal of convex analysis PY - 2014 SP - 715 EP - 726 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a6/ ID - JCA_2014_21_3_JCA_2014_21_3_a6 ER -
W. Pompe. Sufficient Conditions for an Existence of a Solution to a Differential Inclusion. Journal of convex analysis, Tome 21 (2014) no. 3, pp. 715-726. http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a6/