On Completely Continuous Integration Operators of a Vector Measure
Journal of convex analysis, Tome 21 (2014) no. 3, pp. 811-818
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $m$ be a vector measure taking values in a Banach space $X$. We prove that if the integration operator $I_m: L^1(m) \to X$, $I_m(f)=\int f \, dm$, is completely continuous and $X$ is Asplund, then $m$ has finite variation and $L^1(m) =L^1(|m|)$.
Classification :
46E30, 46G10, 47B07
Mots-clés : Integration operator, vector measure, completely continuous operator, Asplund space
Mots-clés : Integration operator, vector measure, completely continuous operator, Asplund space
@article{JCA_2014_21_3_JCA_2014_21_3_a11,
author = {J. M. Calabuig and J. Rodr{\'\i}guez and E. A. S\'anchez-P\'erez},
title = {On {Completely} {Continuous} {Integration} {Operators} of a {Vector} {Measure}},
journal = {Journal of convex analysis},
pages = {811--818},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a11/}
}
TY - JOUR AU - J. M. Calabuig AU - J. Rodríguez AU - E. A. Sánchez-Pérez TI - On Completely Continuous Integration Operators of a Vector Measure JO - Journal of convex analysis PY - 2014 SP - 811 EP - 818 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a11/ ID - JCA_2014_21_3_JCA_2014_21_3_a11 ER -
%0 Journal Article %A J. M. Calabuig %A J. Rodríguez %A E. A. Sánchez-Pérez %T On Completely Continuous Integration Operators of a Vector Measure %J Journal of convex analysis %D 2014 %P 811-818 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a11/ %F JCA_2014_21_3_JCA_2014_21_3_a11
J. M. Calabuig; J. Rodríguez; E. A. Sánchez-Pérez. On Completely Continuous Integration Operators of a Vector Measure. Journal of convex analysis, Tome 21 (2014) no. 3, pp. 811-818. http://geodesic.mathdoc.fr/item/JCA_2014_21_3_JCA_2014_21_3_a11/