Mean-Value Inequalities for Convex Functions and the Chebysev-Vietoris Inequality
Journal of convex analysis, Tome 21 (2014) no. 2, pp. 415-424
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\R{\mathbb{R}} It is shown that if $B=[-b_1, b_1] \times \cdots \times [-b_n,b_n] \subset \R^n,$ where $b_i>0$ for $i=1,...,n\,,$ and if $A$ is a convex and compact subset of $B$ of positive Lebesgue measure, which is preserved by reflections with respect to all coordinate hyperplanes $x_i=0$ for $i=1,...,n \,,$ then $A$ is convexly majorized by $B,$ i.e., for every continuous convex function $v$ defined over $B,$ the mean of $v$ over $A$ is not exceeding the mean of $v$ over $B.$ In the proof an n-dimensional extension of the integral form of the Chebysev inequality, which was given by L. Vietoris [{\it Eine Verallgemeinerung eines Satzes von Tschebyscheff}, Univ. Beograd Publ. Elektrotehn, Fak. Ser. Mat. Fiz 461-497 (1974) 115-117], is used.
@article{JCA_2014_21_2_JCA_2014_21_2_a4,
author = {P. Fischer and Z. Slodkowski},
title = {Mean-Value {Inequalities} for {Convex} {Functions} and the {Chebysev-Vietoris} {Inequality}},
journal = {Journal of convex analysis},
pages = {415--424},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a4/}
}
TY - JOUR AU - P. Fischer AU - Z. Slodkowski TI - Mean-Value Inequalities for Convex Functions and the Chebysev-Vietoris Inequality JO - Journal of convex analysis PY - 2014 SP - 415 EP - 424 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a4/ ID - JCA_2014_21_2_JCA_2014_21_2_a4 ER -
%0 Journal Article %A P. Fischer %A Z. Slodkowski %T Mean-Value Inequalities for Convex Functions and the Chebysev-Vietoris Inequality %J Journal of convex analysis %D 2014 %P 415-424 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a4/ %F JCA_2014_21_2_JCA_2014_21_2_a4
P. Fischer; Z. Slodkowski. Mean-Value Inequalities for Convex Functions and the Chebysev-Vietoris Inequality. Journal of convex analysis, Tome 21 (2014) no. 2, pp. 415-424. http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a4/