Closedness of the Set of Extreme Points in Calderon-Lozanovskii Spaces
Journal of convex analysis, Tome 21 (2014) no. 2, pp. 401-413
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\Ext{\operatorname{Ext}} \def\R{\Bbb R} It is known [see R. M. Blumenthal, J. Lindenstrauss, R. R. Phelps, {\it Extreme operators into C(K)}, Pacific Journal of Mathematics 15(3) (1965), 747-756] that a compact linear operator from a Banach space $X$ into the space of continuous functions $C(Z,\R)$ is extreme provided it is nice, i.e. $T^{*}(Z)\subset \Ext B(X^{*})$, where $Z$ is a compact Hausdorff space and $T^{*}: Z\to X^{*}$ is a continuous function defined by $T^{*}(z)(x)=T(x)(z)$. The nice operator condition can be weakened as long as the set of extreme points $\Ext B(X^{*})$ is closed, namely it suffices to assume than $T^{*}(Z_0)\subset \Ext B(X^{*})$ for some dense subset $Z_0\subset Z$ in that case. The aim of this paper is to characterize the closedness of the set of extreme points of the unit ball of Calderon-Lozanovskii spaces $E_{\varphi}$ generated by the K\"{o}the space $E$ and the Orlicz function $\varphi$. The main theorem of the paper (Theorem 2.12) gives conditions under which the closedness of the set $\Ext B(E_{\varphi})$ is equivalent to the closedness of the set of extreme points of the unit ball of the corresponding K\"{o}the space $E$.
Classification :
46B20, 46E30
Mots-clés : Calderon-Lozanovskii spaces, extreme points, compact operators, Orlicz spaces, Koethe spaces
Mots-clés : Calderon-Lozanovskii spaces, extreme points, compact operators, Orlicz spaces, Koethe spaces
@article{JCA_2014_21_2_JCA_2014_21_2_a3,
author = {E. Kasior and M. Wisla},
title = {Closedness of the {Set} of {Extreme} {Points} in {Calderon-Lozanovskii} {Spaces}},
journal = {Journal of convex analysis},
pages = {401--413},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a3/}
}
TY - JOUR AU - E. Kasior AU - M. Wisla TI - Closedness of the Set of Extreme Points in Calderon-Lozanovskii Spaces JO - Journal of convex analysis PY - 2014 SP - 401 EP - 413 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a3/ ID - JCA_2014_21_2_JCA_2014_21_2_a3 ER -
E. Kasior; M. Wisla. Closedness of the Set of Extreme Points in Calderon-Lozanovskii Spaces. Journal of convex analysis, Tome 21 (2014) no. 2, pp. 401-413. http://geodesic.mathdoc.fr/item/JCA_2014_21_2_JCA_2014_21_2_a3/