Some Geometric Properties of the Cesàro Function Spaces
Journal of convex analysis, Tome 21 (2014) no. 1, pp. 189-2.

Voir la notice de l'article provenant de la source Heldermann Verlag

Some geometric properties of the Ces{\`a}ro function spaces $C_{p,w}$, $1\leqslant p\infty$, induced by an arbitrary positive weight function $w$ on an interval $(0,l)$ where $0 l \leqslant\infty$ are studied in this paper. It is shown that all non-empty relatively weakly open sets in the unit ball of $C_{p,w}$ have diameter $2$. Also $C_{p,w}$, $1p\infty$ is strictly convex but no point of its unit ball is strongly extreme. Moreover, some connections between uniformly non-square points and various geometric properties in general Banach spaces are presented.
Classification : 46E30, 46B20, 46B42
Mots-clés : Cesaro function space, diameter 2 property, weak neighborhoods, uniformly non-square points
@article{JCA_2014_21_1_JCA_2014_21_1_a9,
     author = {D. Kubiak},
     title = {Some {Geometric} {Properties} of the {Ces\`aro} {Function} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {189--2},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a9/}
}
TY  - JOUR
AU  - D. Kubiak
TI  - Some Geometric Properties of the Cesàro Function Spaces
JO  - Journal of convex analysis
PY  - 2014
SP  - 189
EP  - 2
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a9/
ID  - JCA_2014_21_1_JCA_2014_21_1_a9
ER  - 
%0 Journal Article
%A D. Kubiak
%T Some Geometric Properties of the Cesàro Function Spaces
%J Journal of convex analysis
%D 2014
%P 189-2
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a9/
%F JCA_2014_21_1_JCA_2014_21_1_a9
D. Kubiak. Some Geometric Properties of the Cesàro Function Spaces. Journal of convex analysis, Tome 21 (2014) no. 1, pp. 189-2. http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a9/