Some More Applications of the Hahn-Banach Theorem
Journal of convex analysis, Tome 21 (2014) no. 1, pp. 179-188
Voir la notice de l'article provenant de la source Heldermann Verlag
We give a new proof of the fact that equivalent norms on subspaces can be extended. This new proof is based on the Hahn-Banach Extension Theorem. We also give new characterizations for an equivalent norm on a dual space to be a dual norm. Finally, a new proof of a particular case of the Hahn-Banach Separation Theorem is provided without involving the Axiom of Choice.
Classification :
46B20
Mots-clés : Equivalent norm, dual norm, Hahn-Banach, Axiom of Choice
Mots-clés : Equivalent norm, dual norm, Hahn-Banach, Axiom of Choice
@article{JCA_2014_21_1_JCA_2014_21_1_a8,
author = {F. J. Garc{\'\i}a-Pacheco and D. Puglisi and G. van Zyl},
title = {Some {More} {Applications} of the {Hahn-Banach} {Theorem}},
journal = {Journal of convex analysis},
pages = {179--188},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a8/}
}
TY - JOUR AU - F. J. García-Pacheco AU - D. Puglisi AU - G. van Zyl TI - Some More Applications of the Hahn-Banach Theorem JO - Journal of convex analysis PY - 2014 SP - 179 EP - 188 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a8/ ID - JCA_2014_21_1_JCA_2014_21_1_a8 ER -
F. J. García-Pacheco; D. Puglisi; G. van Zyl. Some More Applications of the Hahn-Banach Theorem. Journal of convex analysis, Tome 21 (2014) no. 1, pp. 179-188. http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a8/