Some More Applications of the Hahn-Banach Theorem
Journal of convex analysis, Tome 21 (2014) no. 1, pp. 179-188.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give a new proof of the fact that equivalent norms on subspaces can be extended. This new proof is based on the Hahn-Banach Extension Theorem. We also give new characterizations for an equivalent norm on a dual space to be a dual norm. Finally, a new proof of a particular case of the Hahn-Banach Separation Theorem is provided without involving the Axiom of Choice.
Classification : 46B20
Mots-clés : Equivalent norm, dual norm, Hahn-Banach, Axiom of Choice
@article{JCA_2014_21_1_JCA_2014_21_1_a8,
     author = {F. J. Garc{\'\i}a-Pacheco and D. Puglisi and G. van Zyl},
     title = {Some {More} {Applications} of the {Hahn-Banach} {Theorem}},
     journal = {Journal of convex analysis},
     pages = {179--188},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a8/}
}
TY  - JOUR
AU  - F. J. García-Pacheco
AU  - D. Puglisi
AU  - G. van Zyl
TI  - Some More Applications of the Hahn-Banach Theorem
JO  - Journal of convex analysis
PY  - 2014
SP  - 179
EP  - 188
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a8/
ID  - JCA_2014_21_1_JCA_2014_21_1_a8
ER  - 
%0 Journal Article
%A F. J. García-Pacheco
%A D. Puglisi
%A G. van Zyl
%T Some More Applications of the Hahn-Banach Theorem
%J Journal of convex analysis
%D 2014
%P 179-188
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a8/
%F JCA_2014_21_1_JCA_2014_21_1_a8
F. J. García-Pacheco; D. Puglisi; G. van Zyl. Some More Applications of the Hahn-Banach Theorem. Journal of convex analysis, Tome 21 (2014) no. 1, pp. 179-188. http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a8/