On Uniform Nonsquareness and Uniform Normal Structure in Banach Lattices
Journal of convex analysis, Tome 21 (2014) no. 1, pp. 167-177
Voir la notice de l'article provenant de la source Heldermann Verlag
We give a sufficient condition for uniform nonsquareness of a Banach lattice in terms of the characteristic of monotonicity and the Riesz angle. For a Köthe space X we prove that orthogonal uniform convexity implies uniform normal structure and uniform nonsquareness both in X and X*.
Classification :
46B20, 46B42, 46E30, 47H10
Mots-clés : Uniform nonsquareness, uniform monotonicity, Riesz angle, orthogonal uniform convexity, uniform normal structure, fixed point property
Mots-clés : Uniform nonsquareness, uniform monotonicity, Riesz angle, orthogonal uniform convexity, uniform normal structure, fixed point property
@article{JCA_2014_21_1_JCA_2014_21_1_a7,
author = {S. Prus},
title = {On {Uniform} {Nonsquareness} and {Uniform} {Normal} {Structure} in {Banach} {Lattices}},
journal = {Journal of convex analysis},
pages = {167--177},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a7/}
}
S. Prus. On Uniform Nonsquareness and Uniform Normal Structure in Banach Lattices. Journal of convex analysis, Tome 21 (2014) no. 1, pp. 167-177. http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a7/