Lower Bounds for the Prékopa-Leindler Deficit by Some Distances Modulo Translations
Journal of convex analysis, Tome 21 (2014) no. 1, pp. 289-305.

Voir la notice de l'article provenant de la source Heldermann Verlag

We discuss some refinements of the classical Prékopa-Leindler inequality, which consist in the addition of an extra-term depending on a distance modulo translations. Our results hold true on suitable classes of functions of n variables. They are based upon two different kinds of 1-dimensional refinements: the former is the one obtained by K. M. Ball and K. Böröczky ["Stability of the Prékopa-Leindler inequality", Mathematika 56 (2010) 339-356] and involves an L1-type distance on log-concave functions, the latter is new and involves the transport map onto the Lebesgue measure. Starting from each of these 1-dimensional refinements, we obtain an n-dimensional counterpart by exploiting a generalized version of the Cramér-Wold Theorem.
Classification : 52A40, 26D10, 39B62
Mots-clés : Functional inequalities, Cramer-Wold Theorem, log-concave functions, mass transportation
@article{JCA_2014_21_1_JCA_2014_21_1_a15,
     author = {D. Bucur and I. Fragal\'a},
     title = {Lower {Bounds} for the {Pr\'ekopa-Leindler} {Deficit} by {Some} {Distances} {Modulo} {Translations}},
     journal = {Journal of convex analysis},
     pages = {289--305},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a15/}
}
TY  - JOUR
AU  - D. Bucur
AU  - I. Fragalá
TI  - Lower Bounds for the Prékopa-Leindler Deficit by Some Distances Modulo Translations
JO  - Journal of convex analysis
PY  - 2014
SP  - 289
EP  - 305
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a15/
ID  - JCA_2014_21_1_JCA_2014_21_1_a15
ER  - 
%0 Journal Article
%A D. Bucur
%A I. Fragalá
%T Lower Bounds for the Prékopa-Leindler Deficit by Some Distances Modulo Translations
%J Journal of convex analysis
%D 2014
%P 289-305
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a15/
%F JCA_2014_21_1_JCA_2014_21_1_a15
D. Bucur; I. Fragalá. Lower Bounds for the Prékopa-Leindler Deficit by Some Distances Modulo Translations. Journal of convex analysis, Tome 21 (2014) no. 1, pp. 289-305. http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a15/