Lower Bounds for the Prékopa-Leindler Deficit by Some Distances Modulo Translations
Journal of convex analysis, Tome 21 (2014) no. 1, pp. 289-305
Voir la notice de l'article provenant de la source Heldermann Verlag
We discuss some refinements of the classical Prékopa-Leindler inequality, which consist in the addition of an extra-term depending on a distance modulo translations. Our results hold true on suitable classes of functions of n variables. They are based upon two different kinds of 1-dimensional refinements: the former is the one obtained by K. M. Ball and K. Böröczky ["Stability of the Prékopa-Leindler inequality", Mathematika 56 (2010) 339-356] and involves an L1-type distance on log-concave functions, the latter is new and involves the transport map onto the Lebesgue measure. Starting from each of these 1-dimensional refinements, we obtain an n-dimensional counterpart by exploiting a generalized version of the Cramér-Wold Theorem.
Classification :
52A40, 26D10, 39B62
Mots-clés : Functional inequalities, Cramer-Wold Theorem, log-concave functions, mass transportation
Mots-clés : Functional inequalities, Cramer-Wold Theorem, log-concave functions, mass transportation
@article{JCA_2014_21_1_JCA_2014_21_1_a15,
author = {D. Bucur and I. Fragal\'a},
title = {Lower {Bounds} for the {Pr\'ekopa-Leindler} {Deficit} by {Some} {Distances} {Modulo} {Translations}},
journal = {Journal of convex analysis},
pages = {289--305},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a15/}
}
TY - JOUR AU - D. Bucur AU - I. Fragalá TI - Lower Bounds for the Prékopa-Leindler Deficit by Some Distances Modulo Translations JO - Journal of convex analysis PY - 2014 SP - 289 EP - 305 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a15/ ID - JCA_2014_21_1_JCA_2014_21_1_a15 ER -
%0 Journal Article %A D. Bucur %A I. Fragalá %T Lower Bounds for the Prékopa-Leindler Deficit by Some Distances Modulo Translations %J Journal of convex analysis %D 2014 %P 289-305 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a15/ %F JCA_2014_21_1_JCA_2014_21_1_a15
D. Bucur; I. Fragalá. Lower Bounds for the Prékopa-Leindler Deficit by Some Distances Modulo Translations. Journal of convex analysis, Tome 21 (2014) no. 1, pp. 289-305. http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a15/