Multivalued Equations on a Bounded Domain via Minimization on Orlicz-Sobolev Spaces
Journal of convex analysis, Tome 21 (2014) no. 1, pp. 201-218.

Voir la notice de l'article provenant de la source Heldermann Verlag

We exploit minimization of locally Lipschitz functionals defined on Orlicz-Sobolev spaces along with convexity techniques, to investigate existence of solution of the multivalued equation\ \ $-\Delta_{\Phi} u \in \partial j(.,u) + h$\ \ in $\Omega$, where $\Omega \subset {\bf R}^N$ is a bounded smooth domain, $\Phi: {\bf R} \to [0,\infty)$ is an N-function, $\Delta_{\Phi}$ is the corresponding $\Phi$-Laplacian, $h$ is a measure on $\Omega$ and $\partial j(., u)$ stands for the Clarke generalized gradient of a function $j$ linked with critical growth. Regularity of the solutions is addressed as well.
Mots-clés : Minimization, convexity, Orlicz-Sobolev space
@article{JCA_2014_21_1_JCA_2014_21_1_a10,
     author = {M. L. Carvalho and J. V. Goncalves},
     title = {Multivalued {Equations} on a {Bounded} {Domain} via {Minimization} on {Orlicz-Sobolev} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {201--218},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a10/}
}
TY  - JOUR
AU  - M. L. Carvalho
AU  - J. V. Goncalves
TI  - Multivalued Equations on a Bounded Domain via Minimization on Orlicz-Sobolev Spaces
JO  - Journal of convex analysis
PY  - 2014
SP  - 201
EP  - 218
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a10/
ID  - JCA_2014_21_1_JCA_2014_21_1_a10
ER  - 
%0 Journal Article
%A M. L. Carvalho
%A J. V. Goncalves
%T Multivalued Equations on a Bounded Domain via Minimization on Orlicz-Sobolev Spaces
%J Journal of convex analysis
%D 2014
%P 201-218
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a10/
%F JCA_2014_21_1_JCA_2014_21_1_a10
M. L. Carvalho; J. V. Goncalves. Multivalued Equations on a Bounded Domain via Minimization on Orlicz-Sobolev Spaces. Journal of convex analysis, Tome 21 (2014) no. 1, pp. 201-218. http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a10/