Multivalued Equations on a Bounded Domain via Minimization on Orlicz-Sobolev Spaces
Journal of convex analysis, Tome 21 (2014) no. 1, pp. 201-218
Voir la notice de l'article provenant de la source Heldermann Verlag
We exploit minimization of locally Lipschitz functionals defined on Orlicz-Sobolev spaces along with convexity techniques, to investigate existence of solution of the multivalued equation\ \ $-\Delta_{\Phi} u \in \partial j(.,u) + h$\ \ in $\Omega$, where $\Omega \subset {\bf R}^N$ is a bounded smooth domain, $\Phi: {\bf R} \to [0,\infty)$ is an N-function, $\Delta_{\Phi}$ is the corresponding $\Phi$-Laplacian, $h$ is a measure on $\Omega$ and $\partial j(., u)$ stands for the Clarke generalized gradient of a function $j$ linked with critical growth. Regularity of the solutions is addressed as well.
Mots-clés :
Minimization, convexity, Orlicz-Sobolev space
@article{JCA_2014_21_1_JCA_2014_21_1_a10,
author = {M. L. Carvalho and J. V. Goncalves},
title = {Multivalued {Equations} on a {Bounded} {Domain} via {Minimization} on {Orlicz-Sobolev} {Spaces}},
journal = {Journal of convex analysis},
pages = {201--218},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2014},
url = {http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a10/}
}
TY - JOUR AU - M. L. Carvalho AU - J. V. Goncalves TI - Multivalued Equations on a Bounded Domain via Minimization on Orlicz-Sobolev Spaces JO - Journal of convex analysis PY - 2014 SP - 201 EP - 218 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a10/ ID - JCA_2014_21_1_JCA_2014_21_1_a10 ER -
%0 Journal Article %A M. L. Carvalho %A J. V. Goncalves %T Multivalued Equations on a Bounded Domain via Minimization on Orlicz-Sobolev Spaces %J Journal of convex analysis %D 2014 %P 201-218 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a10/ %F JCA_2014_21_1_JCA_2014_21_1_a10
M. L. Carvalho; J. V. Goncalves. Multivalued Equations on a Bounded Domain via Minimization on Orlicz-Sobolev Spaces. Journal of convex analysis, Tome 21 (2014) no. 1, pp. 201-218. http://geodesic.mathdoc.fr/item/JCA_2014_21_1_JCA_2014_21_1_a10/