A Generalization of Blaschke's Convergence Theorem in Metric Spaces
Journal of convex analysis, Tome 20 (2013) no. 4, pp. 1013-1024.

Voir la notice de l'article provenant de la source Heldermann Verlag

A metric space $(X, d)$ together with a set-valued mapping $G: X\times X\to 2^X$ is said to be a \emph{generalized segment space} $(X, d, G)$ if $G(x, y)\not=\emptyset$ for all $x, y\in X$ and for any sequences $x_n\to x$ and $y_n\to y$ in $X$, $d_H\big(G(x_n, y_n), G(x, y) \big) \to 0$ as $n\to \infty$, where $d_H$ is the Hausdorff distance. Normed linear spaces, nonempty convex sets, and proper uniquely geodesic spaces, etc are generalized segment spaces for suitable $G$. A subset $A$ of $X$ is called \emph{$G$-type convex} if $G(x, y)\subset A$ whenever $x, y\in A$. We prove a generalization of Blaschke's convergence theorem for metric spaces: if $(X, d, G)$ is a proper generalized segment space, then every uniformly bounded sequence of nonempty $G$-type convex subsets of $X$ contains a subsequence which converges to some nonempty compact $G$-type convex subset in $X$.
Classification : 52A10, 52B55, 52C45
Mots-clés : Blaschke's convergence theorem, convex sets, generalized convexity, geodesic convex sets, geodesic segments, Hausdorff distance, uniquely geodesic spaces
@article{JCA_2013_20_4_JCA_2013_20_4_a7,
     author = {N. N. Hai and P. T. An},
     title = {A {Generalization} of {Blaschke's} {Convergence} {Theorem} in {Metric} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {1013--1024},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_4_JCA_2013_20_4_a7/}
}
TY  - JOUR
AU  - N. N. Hai
AU  - P. T. An
TI  - A Generalization of Blaschke's Convergence Theorem in Metric Spaces
JO  - Journal of convex analysis
PY  - 2013
SP  - 1013
EP  - 1024
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_4_JCA_2013_20_4_a7/
ID  - JCA_2013_20_4_JCA_2013_20_4_a7
ER  - 
%0 Journal Article
%A N. N. Hai
%A P. T. An
%T A Generalization of Blaschke's Convergence Theorem in Metric Spaces
%J Journal of convex analysis
%D 2013
%P 1013-1024
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_4_JCA_2013_20_4_a7/
%F JCA_2013_20_4_JCA_2013_20_4_a7
N. N. Hai; P. T. An. A Generalization of Blaschke's Convergence Theorem in Metric Spaces. Journal of convex analysis, Tome 20 (2013) no. 4, pp. 1013-1024. http://geodesic.mathdoc.fr/item/JCA_2013_20_4_JCA_2013_20_4_a7/