Inward Pointing Trajectories, Normality of the Maximum Principle and the Non Occurrence of the Lavrentieff Phenomenon in Optimal Control under State Constraints
Journal of convex analysis, Tome 20 (2013) no. 4, pp. 1147-118.

Voir la notice de l'article provenant de la source Heldermann Verlag

It is well known that every strong local minimizer of the Bolza problem under state constraints satisfies a constrained maximum principle. In the absence of constraints qualifications the maximum principle may be abnormal, that is, not involving the cost functions. Normality of the maximum principle can be investigated by studying reachable sets of an associated linear system under linearized state constraints. In this paper we provide sufficient conditions for the existence of solutions to such system and apply them to guarantee the non occurrence of the Lavrentieff phenomenon in optimal control under state constraints.
@article{JCA_2013_20_4_JCA_2013_20_4_a14,
     author = {H. Frankowska and D. Tonon},
     title = {Inward {Pointing} {Trajectories,} {Normality} of the {Maximum} {Principle} and the {Non} {Occurrence} of the {Lavrentieff} {Phenomenon} in {Optimal} {Control} under {State} {Constraints}},
     journal = {Journal of convex analysis},
     pages = {1147--118},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_4_JCA_2013_20_4_a14/}
}
TY  - JOUR
AU  - H. Frankowska
AU  - D. Tonon
TI  - Inward Pointing Trajectories, Normality of the Maximum Principle and the Non Occurrence of the Lavrentieff Phenomenon in Optimal Control under State Constraints
JO  - Journal of convex analysis
PY  - 2013
SP  - 1147
EP  - 118
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_4_JCA_2013_20_4_a14/
ID  - JCA_2013_20_4_JCA_2013_20_4_a14
ER  - 
%0 Journal Article
%A H. Frankowska
%A D. Tonon
%T Inward Pointing Trajectories, Normality of the Maximum Principle and the Non Occurrence of the Lavrentieff Phenomenon in Optimal Control under State Constraints
%J Journal of convex analysis
%D 2013
%P 1147-118
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_4_JCA_2013_20_4_a14/
%F JCA_2013_20_4_JCA_2013_20_4_a14
H. Frankowska; D. Tonon. Inward Pointing Trajectories, Normality of the Maximum Principle and the Non Occurrence of the Lavrentieff Phenomenon in Optimal Control under State Constraints. Journal of convex analysis, Tome 20 (2013) no. 4, pp. 1147-118. http://geodesic.mathdoc.fr/item/JCA_2013_20_4_JCA_2013_20_4_a14/