Oscillations and Concentrations in Sequences of Gradients up to the Boundary
Journal of convex analysis, Tome 20 (2013) no. 3, pp. 723-752
Voir la notice de l'article provenant de la source Heldermann Verlag
\renewcommand{\O}{\Omega} \newcommand{\R}{{\mathbb R}} Oscillations and concentrations in sequences of gradients $\{\nabla u_k\}$, bounded in $L^p(\O; \R^{M\times N})$ if $p>1$ and $\O\subset\R^n$ is a bounded domain with the extension property in $W^{1,p}$, and their interaction with local integral functionals can be described by a generalization of Young measures due to DiPerna and Majda. We characterize such DiPerna-Majda measures, thereby extending a result by A. Ka{\l}amajska and M. Kru\v{z}{\'\i}k [``Oscillations and concentrations in sequences of gradients'', ESAIM, Control Optim. Calc. Var. 14(1) (2008) 71--104], where the full characterization was possible only for sequences subject to a fixed Dirichlet boundary condition. As an application we state a relaxation result for noncoercive multiple-integral functionals.
Classification :
49J45, 35B05
Mots-clés : Sequences of gradients, concentrations, oscillations, quasiconvexity
Mots-clés : Sequences of gradients, concentrations, oscillations, quasiconvexity
@article{JCA_2013_20_3_JCA_2013_20_3_a6,
author = {S. Kr\"omer and M. Kruz{\'\i}k},
title = {Oscillations and {Concentrations} in {Sequences} of {Gradients} up to the {Boundary}},
journal = {Journal of convex analysis},
pages = {723--752},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2013},
url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a6/}
}
TY - JOUR AU - S. Krömer AU - M. Kruzík TI - Oscillations and Concentrations in Sequences of Gradients up to the Boundary JO - Journal of convex analysis PY - 2013 SP - 723 EP - 752 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a6/ ID - JCA_2013_20_3_JCA_2013_20_3_a6 ER -
S. Krömer; M. Kruzík. Oscillations and Concentrations in Sequences of Gradients up to the Boundary. Journal of convex analysis, Tome 20 (2013) no. 3, pp. 723-752. http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a6/