A Generalized Sylvester Problem and a Generalized Fermat-Torricelli Problem
Journal of convex analysis, Tome 20 (2013) no. 3, pp. 669-687.

Voir la notice de l'article provenant de la source Heldermann Verlag

We introduce and study the following problem and its further generalizations: given two finite collections of sets in a normed space, find a ball whose center lies in a given constraint set with the smallest radius that encloses all the sets in the first collection and intersects all the sets in the second one. This problem can be considered as a generalized version of the Sylvester smallest enclosing circle problem introduced in the 19th century by Sylvester which asks for the circle of smallest radius enclosing a given set of finite points in the plane. We also consider a generalized version of the Fermat-Torricelli problem: given two finite collections of sets in a normed space, find a point in a given constraint set that minimizes the sum of the farthest distances to the sets in the first collection and shortest distances (distances) to the sets in the second collection.
Classification : 49J52, 49J53, 90C31
Mots-clés : Sylvester smallest enclosing circle problem, Fermat-Torricelli problem, smallest enclosing ball problem, smallest intersecting ball problem
@article{JCA_2013_20_3_JCA_2013_20_3_a3,
     author = {N. M. Nam and N. Hoang},
     title = {A {Generalized} {Sylvester} {Problem} and a {Generalized} {Fermat-Torricelli} {Problem}},
     journal = {Journal of convex analysis},
     pages = {669--687},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a3/}
}
TY  - JOUR
AU  - N. M. Nam
AU  - N. Hoang
TI  - A Generalized Sylvester Problem and a Generalized Fermat-Torricelli Problem
JO  - Journal of convex analysis
PY  - 2013
SP  - 669
EP  - 687
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a3/
ID  - JCA_2013_20_3_JCA_2013_20_3_a3
ER  - 
%0 Journal Article
%A N. M. Nam
%A N. Hoang
%T A Generalized Sylvester Problem and a Generalized Fermat-Torricelli Problem
%J Journal of convex analysis
%D 2013
%P 669-687
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a3/
%F JCA_2013_20_3_JCA_2013_20_3_a3
N. M. Nam; N. Hoang. A Generalized Sylvester Problem and a Generalized Fermat-Torricelli Problem. Journal of convex analysis, Tome 20 (2013) no. 3, pp. 669-687. http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a3/