Approximation of Pettis Integrable Multifunctions with Values in Arbitrary Banach Spaces
Journal of convex analysis, Tome 20 (2013) no. 3, pp. 833-87.

Voir la notice de l'article provenant de la source Heldermann Verlag

Approximation of functions and multifunctions by simple functions and multifunctions plays an important role in the theory separable valued functions and multifunctions. Also in case of Pettis integrable functions with values in non-separable Banach spaces there exists a satisfactory approximation theory, but in case of Pettis integrable multifunctions with values in non-separable Banach spaces no such a theory exists. It is the aim of this paper to fill in that gap.
Classification : 28B20, 28B05, 46G10, 54C60, 54C65
Mots-clés : Multifunctions, multimeasures, approximation, set-valued Pettis integral, support functions, selections, martingales
@article{JCA_2013_20_3_JCA_2013_20_3_a10,
     author = {K. Musial},
     title = {Approximation of {Pettis} {Integrable} {Multifunctions} with {Values} in {Arbitrary} {Banach} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {833--87},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a10/}
}
TY  - JOUR
AU  - K. Musial
TI  - Approximation of Pettis Integrable Multifunctions with Values in Arbitrary Banach Spaces
JO  - Journal of convex analysis
PY  - 2013
SP  - 833
EP  - 87
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a10/
ID  - JCA_2013_20_3_JCA_2013_20_3_a10
ER  - 
%0 Journal Article
%A K. Musial
%T Approximation of Pettis Integrable Multifunctions with Values in Arbitrary Banach Spaces
%J Journal of convex analysis
%D 2013
%P 833-87
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a10/
%F JCA_2013_20_3_JCA_2013_20_3_a10
K. Musial. Approximation of Pettis Integrable Multifunctions with Values in Arbitrary Banach Spaces. Journal of convex analysis, Tome 20 (2013) no. 3, pp. 833-87. http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a10/