A Coarea-Type Formula for the Relaxation of a Generalized Elastica Functional
Journal of convex analysis, Tome 20 (2013) no. 3, pp. 617-653
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\wpq#1#2{{\mathrm W}^{#1,#2}} \def\oF{\overline{F}} \def\cont{{\mathrm{C}}} \def\mdiv{\operatorname{div}} \def\BV{{\mathrm{BV}}} \def\lp#1{{\mathrm L}^{#1}} \def\R{\mathbb{R}} We consider the {\em generalized elastica functional} defined on $\lp{1}(\R^2)$ as $$ F(u)=\left\{\begin{array}{ll} \displaystyle\int_{\R^2}|\nabla u|(\alpha+\beta|\mdiv \frac{\nabla u}{|\nabla u|}|^p)\,dx,\text{if $u\in \cont^2(\R^2),$}\\[6mm] +\infty\text{else},\end{array}\right. $$ where $p>1$, $\alpha>0$, $\beta\geq 0$. We study the $\lp{1}$-lower semicontinuous envelope $\oF$ of $F$ and we prove that, for any $u\in\BV(\R^2)$, $\oF(u)$ can be represented by a coarea-type formula involving suitable collections of $\wpq{2}{p}$ curves that cover the essential boundaries of the level sets $\{x,\,u(x)> t\}$, $t\in\R$.
@article{JCA_2013_20_3_JCA_2013_20_3_a1,
author = {S. Masnou and G. Nardi},
title = {A {Coarea-Type} {Formula} for the {Relaxation} of a {Generalized} {Elastica} {Functional}},
journal = {Journal of convex analysis},
pages = {617--653},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2013},
url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a1/}
}
TY - JOUR AU - S. Masnou AU - G. Nardi TI - A Coarea-Type Formula for the Relaxation of a Generalized Elastica Functional JO - Journal of convex analysis PY - 2013 SP - 617 EP - 653 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a1/ ID - JCA_2013_20_3_JCA_2013_20_3_a1 ER -
S. Masnou; G. Nardi. A Coarea-Type Formula for the Relaxation of a Generalized Elastica Functional. Journal of convex analysis, Tome 20 (2013) no. 3, pp. 617-653. http://geodesic.mathdoc.fr/item/JCA_2013_20_3_JCA_2013_20_3_a1/