Learning how to Play Nash, Potential Games and Alternating Minimization Method for Structured Nonconvex Problems on Riemannian Manifolds
Journal of convex analysis, Tome 20 (2013) no. 2, pp. 395-438.

Voir la notice de l'article provenant de la source Heldermann Verlag

We consider minimization problems with constraints. We show that if the set of constraints is a Riemannian manifold of non positive curvature and the objective function is lower semicontinuous and satisfies the Kurdyka-Lojasiewicz property, then the alternating proximal algorithm in Euclidean space is naturally extended to solve that class of problems. We prove that the sequence generated by our algorithm is well defined and converges to an inertial Nash equilibrium under mild assumptions about the objective function. As an application, we give a welcome result on the difficult problem of "learning how to play Nash" (convergence, convergence in finite time, speed of convergence, constraints in action spaces in the context of "alternating potential games" with inertia).
Classification : 65K10, 49J52, 49M27 , 90C26, 91B50, 91B06, 53B20
Mots-clés : Nash equilibrium, convergence, finite time, proximal algorithm, alternation, learning in games, inertia, Riemannian manifold, Kurdyka-Lojasiewicz property
@article{JCA_2013_20_2_JCA_2013_20_2_a5,
     author = {J. X. Cruz Neto and P. R. Oliveira and P. A. Soares Jr and A. Soubeyran},
     title = {Learning how to {Play} {Nash,} {Potential} {Games} and {Alternating} {Minimization} {Method} for {Structured} {Nonconvex} {Problems} on {Riemannian} {Manifolds}},
     journal = {Journal of convex analysis},
     pages = {395--438},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a5/}
}
TY  - JOUR
AU  - J. X. Cruz Neto
AU  - P. R. Oliveira
AU  - P. A. Soares Jr
AU  - A. Soubeyran
TI  - Learning how to Play Nash, Potential Games and Alternating Minimization Method for Structured Nonconvex Problems on Riemannian Manifolds
JO  - Journal of convex analysis
PY  - 2013
SP  - 395
EP  - 438
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a5/
ID  - JCA_2013_20_2_JCA_2013_20_2_a5
ER  - 
%0 Journal Article
%A J. X. Cruz Neto
%A P. R. Oliveira
%A P. A. Soares Jr
%A A. Soubeyran
%T Learning how to Play Nash, Potential Games and Alternating Minimization Method for Structured Nonconvex Problems on Riemannian Manifolds
%J Journal of convex analysis
%D 2013
%P 395-438
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a5/
%F JCA_2013_20_2_JCA_2013_20_2_a5
J. X. Cruz Neto; P. R. Oliveira; P. A. Soares Jr; A. Soubeyran. Learning how to Play Nash, Potential Games and Alternating Minimization Method for Structured Nonconvex Problems on Riemannian Manifolds. Journal of convex analysis, Tome 20 (2013) no. 2, pp. 395-438. http://geodesic.mathdoc.fr/item/JCA_2013_20_2_JCA_2013_20_2_a5/