The Relative Isoperimetric Inequality: the Anisotropic Case
Journal of convex analysis, Tome 20 (2013) no. 1, pp. 157-18
Cet article a éte moissonné depuis la source Heldermann Verlag
We prove a relative isoperimetric inequality in the plane, when the perimeter is defined with respect to a convex, positively homogeneous function of degree one $H\colon\mathbb{R}^2 \rightarrow [0,+\infty[$. Under suitable assumptions on $\Omega$ and $H$, we also characterize the minimizers.
Classification :
52A40
Mots-clés : Anisotropic perimeter, relative isoperimetric inequalities, Wulff shape
Mots-clés : Anisotropic perimeter, relative isoperimetric inequalities, Wulff shape
@article{JCA_2013_20_1_JCA_2013_20_1_a9,
author = {F. Della Pietra and N. Gavitone},
title = {The {Relative} {Isoperimetric} {Inequality:} the {Anisotropic} {Case}},
journal = {Journal of convex analysis},
pages = {157--18},
year = {2013},
volume = {20},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a9/}
}
F. Della Pietra; N. Gavitone. The Relative Isoperimetric Inequality: the Anisotropic Case. Journal of convex analysis, Tome 20 (2013) no. 1, pp. 157-18. http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a9/