The Relative Isoperimetric Inequality: the Anisotropic Case
Journal of convex analysis, Tome 20 (2013) no. 1, pp. 157-18.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove a relative isoperimetric inequality in the plane, when the perimeter is defined with respect to a convex, positively homogeneous function of degree one $H\colon\mathbb{R}^2 \rightarrow [0,+\infty[$. Under suitable assumptions on $\Omega$ and $H$, we also characterize the minimizers.
Classification : 52A40
Mots-clés : Anisotropic perimeter, relative isoperimetric inequalities, Wulff shape
@article{JCA_2013_20_1_JCA_2013_20_1_a9,
     author = {F. Della Pietra and N. Gavitone},
     title = {The {Relative} {Isoperimetric} {Inequality:} the {Anisotropic} {Case}},
     journal = {Journal of convex analysis},
     pages = {157--18},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a9/}
}
TY  - JOUR
AU  - F. Della Pietra
AU  - N. Gavitone
TI  - The Relative Isoperimetric Inequality: the Anisotropic Case
JO  - Journal of convex analysis
PY  - 2013
SP  - 157
EP  - 18
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a9/
ID  - JCA_2013_20_1_JCA_2013_20_1_a9
ER  - 
%0 Journal Article
%A F. Della Pietra
%A N. Gavitone
%T The Relative Isoperimetric Inequality: the Anisotropic Case
%J Journal of convex analysis
%D 2013
%P 157-18
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a9/
%F JCA_2013_20_1_JCA_2013_20_1_a9
F. Della Pietra; N. Gavitone. The Relative Isoperimetric Inequality: the Anisotropic Case. Journal of convex analysis, Tome 20 (2013) no. 1, pp. 157-18. http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a9/