Monotone Operators and "Bigger Conjugate" Functions
Journal of convex analysis, Tome 20 (2013) no. 1, pp. 143-155
Cet article a éte moissonné depuis la source Heldermann Verlag
We study a question posed by Stephen Simons in his 2008 monograph involving "bigger conjugate" (BC) functions and the partial infimal convolution. As Simons demonstrated in his monograph, these function have been crucial to the understanding and advancement of the state-of-the-art of harder problems in monotone operator theory, especially the sum problem.
Classification :
47A06, 47H05, 47B65, 47N10, 90C25
Mots-clés : Adjoint, BC-function, Fenchel conjugate, Fitzpatrick function, linear relation, maximally monotone operator, monotone operator, multifunction, normal cone operator, partial infimal convolution
Mots-clés : Adjoint, BC-function, Fenchel conjugate, Fitzpatrick function, linear relation, maximally monotone operator, monotone operator, multifunction, normal cone operator, partial infimal convolution
@article{JCA_2013_20_1_JCA_2013_20_1_a8,
author = {H. H. Bauschke and J. M. Borwein and X. Wang and L. Yao},
title = {Monotone {Operators} and {"Bigger} {Conjugate"} {Functions}},
journal = {Journal of convex analysis},
pages = {143--155},
year = {2013},
volume = {20},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a8/}
}
TY - JOUR AU - H. H. Bauschke AU - J. M. Borwein AU - X. Wang AU - L. Yao TI - Monotone Operators and "Bigger Conjugate" Functions JO - Journal of convex analysis PY - 2013 SP - 143 EP - 155 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a8/ ID - JCA_2013_20_1_JCA_2013_20_1_a8 ER -
H. H. Bauschke; J. M. Borwein; X. Wang; L. Yao. Monotone Operators and "Bigger Conjugate" Functions. Journal of convex analysis, Tome 20 (2013) no. 1, pp. 143-155. http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a8/