Monotone Operators and "Bigger Conjugate" Functions
Journal of convex analysis, Tome 20 (2013) no. 1, pp. 143-155.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study a question posed by Stephen Simons in his 2008 monograph involving "bigger conjugate" (BC) functions and the partial infimal convolution. As Simons demonstrated in his monograph, these function have been crucial to the understanding and advancement of the state-of-the-art of harder problems in monotone operator theory, especially the sum problem.
Classification : 47A06, 47H05, 47B65, 47N10, 90C25
Mots-clés : Adjoint, BC-function, Fenchel conjugate, Fitzpatrick function, linear relation, maximally monotone operator, monotone operator, multifunction, normal cone operator, partial infimal convolution
@article{JCA_2013_20_1_JCA_2013_20_1_a8,
     author = {H. H. Bauschke and J. M. Borwein and X. Wang and L. Yao},
     title = {Monotone {Operators} and {"Bigger} {Conjugate"} {Functions}},
     journal = {Journal of convex analysis},
     pages = {143--155},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a8/}
}
TY  - JOUR
AU  - H. H. Bauschke
AU  - J. M. Borwein
AU  - X. Wang
AU  - L. Yao
TI  - Monotone Operators and "Bigger Conjugate" Functions
JO  - Journal of convex analysis
PY  - 2013
SP  - 143
EP  - 155
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a8/
ID  - JCA_2013_20_1_JCA_2013_20_1_a8
ER  - 
%0 Journal Article
%A H. H. Bauschke
%A J. M. Borwein
%A X. Wang
%A L. Yao
%T Monotone Operators and "Bigger Conjugate" Functions
%J Journal of convex analysis
%D 2013
%P 143-155
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a8/
%F JCA_2013_20_1_JCA_2013_20_1_a8
H. H. Bauschke; J. M. Borwein; X. Wang; L. Yao. Monotone Operators and "Bigger Conjugate" Functions. Journal of convex analysis, Tome 20 (2013) no. 1, pp. 143-155. http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a8/