The Asymmetric Sandwich Theorem
Journal of convex analysis, Tome 20 (2013) no. 1, pp. 107-124.

Voir la notice de l'article provenant de la source Heldermann Verlag

We discuss the asymmetric sandwich theorem, a generalization of the Hahn-Banach theorem. As applications, we derive various results on the existence of linear functionals that include bivariate, trivariate and quadrivariate generalizations of the Fenchel duality theorem. Most of the results are about affine functions defined on convex subsets of vector spaces, rather than linear functions defined on vector spaces. We consider both results that use a simple boundedness hypothesis (as in Rockafellar's version of the Fenchel duality theorem) and also results that use Baire's theorem (as in the Robinson-Attouch-Brezis version of the Fenchel duality theorem). This paper also contains some new results about metrizable topological vector spaces that are not necessarily locally convex.
Mots-clés : Asymmetric sandwich theorem, Hahn-Banach theorem, Fenchel duality theorem, affine functions, metrizable topological vector spaces, local convexity
@article{JCA_2013_20_1_JCA_2013_20_1_a6,
     author = {S. Simons},
     title = {The {Asymmetric} {Sandwich} {Theorem}},
     journal = {Journal of convex analysis},
     pages = {107--124},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a6/}
}
TY  - JOUR
AU  - S. Simons
TI  - The Asymmetric Sandwich Theorem
JO  - Journal of convex analysis
PY  - 2013
SP  - 107
EP  - 124
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a6/
ID  - JCA_2013_20_1_JCA_2013_20_1_a6
ER  - 
%0 Journal Article
%A S. Simons
%T The Asymmetric Sandwich Theorem
%J Journal of convex analysis
%D 2013
%P 107-124
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a6/
%F JCA_2013_20_1_JCA_2013_20_1_a6
S. Simons. The Asymmetric Sandwich Theorem. Journal of convex analysis, Tome 20 (2013) no. 1, pp. 107-124. http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a6/