Euler Characteristic of Epi-Lipschitz Subsets of Riemannian Manifolds
Journal of convex analysis, Tome 20 (2013) no. 1, pp. 67-91.

Voir la notice de l'article provenant de la source Heldermann Verlag

We present some properties of tangent and normal cones of epi-Lipschitz subsets of complete Riemannian manifolds. The fact that epi-Lipschitz subsets of complete Riemannian manifolds are absolute neighborhood retracts is proved. A notion of Euler characteristic of epi-Lipschitz subsets of complete Riemannian manifolds is introduced. Moreover, we provide a sufficient condition which ensures that the Euler characteristic of this class of sets is equal to one. Then, these results are applied to equilibrium theory on complete parallelizable Riemannian manifolds.
Classification : 49J52, 58E05, 58C30, 55M25
Mots-clés : Clarke subdifferential, Epi-Lipschitz sets, Euler characteristic, Riemannian manifolds
@article{JCA_2013_20_1_JCA_2013_20_1_a4,
     author = {S. Hosseini and M. R. Pouryayevali},
     title = {Euler {Characteristic} of {Epi-Lipschitz} {Subsets} of {Riemannian} {Manifolds}},
     journal = {Journal of convex analysis},
     pages = {67--91},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a4/}
}
TY  - JOUR
AU  - S. Hosseini
AU  - M. R. Pouryayevali
TI  - Euler Characteristic of Epi-Lipschitz Subsets of Riemannian Manifolds
JO  - Journal of convex analysis
PY  - 2013
SP  - 67
EP  - 91
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a4/
ID  - JCA_2013_20_1_JCA_2013_20_1_a4
ER  - 
%0 Journal Article
%A S. Hosseini
%A M. R. Pouryayevali
%T Euler Characteristic of Epi-Lipschitz Subsets of Riemannian Manifolds
%J Journal of convex analysis
%D 2013
%P 67-91
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a4/
%F JCA_2013_20_1_JCA_2013_20_1_a4
S. Hosseini; M. R. Pouryayevali. Euler Characteristic of Epi-Lipschitz Subsets of Riemannian Manifolds. Journal of convex analysis, Tome 20 (2013) no. 1, pp. 67-91. http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a4/