Euler Characteristic of Epi-Lipschitz Subsets of Riemannian Manifolds
Journal of convex analysis, Tome 20 (2013) no. 1, pp. 67-91
Cet article a éte moissonné depuis la source Heldermann Verlag
We present some properties of tangent and normal cones of epi-Lipschitz subsets of complete Riemannian manifolds. The fact that epi-Lipschitz subsets of complete Riemannian manifolds are absolute neighborhood retracts is proved. A notion of Euler characteristic of epi-Lipschitz subsets of complete Riemannian manifolds is introduced. Moreover, we provide a sufficient condition which ensures that the Euler characteristic of this class of sets is equal to one. Then, these results are applied to equilibrium theory on complete parallelizable Riemannian manifolds.
Classification :
49J52, 58E05, 58C30, 55M25
Mots-clés : Clarke subdifferential, Epi-Lipschitz sets, Euler characteristic, Riemannian manifolds
Mots-clés : Clarke subdifferential, Epi-Lipschitz sets, Euler characteristic, Riemannian manifolds
@article{JCA_2013_20_1_JCA_2013_20_1_a4,
author = {S. Hosseini and M. R. Pouryayevali},
title = {Euler {Characteristic} of {Epi-Lipschitz} {Subsets} of {Riemannian} {Manifolds}},
journal = {Journal of convex analysis},
pages = {67--91},
year = {2013},
volume = {20},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a4/}
}
TY - JOUR AU - S. Hosseini AU - M. R. Pouryayevali TI - Euler Characteristic of Epi-Lipschitz Subsets of Riemannian Manifolds JO - Journal of convex analysis PY - 2013 SP - 67 EP - 91 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a4/ ID - JCA_2013_20_1_JCA_2013_20_1_a4 ER -
S. Hosseini; M. R. Pouryayevali. Euler Characteristic of Epi-Lipschitz Subsets of Riemannian Manifolds. Journal of convex analysis, Tome 20 (2013) no. 1, pp. 67-91. http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a4/