Best Constants in Poincaré Inequalities for Convex Domains
Journal of convex analysis, Tome 20 (2013) no. 1, pp. 253-264.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove a Payne-Weinberger type inequality for the p-Laplacian Neumann eigenvalues (p ≥ 2). The inequality provides the sharp upper bound on convex domains, in terms of the diameter alone, of the best constant in Poincaré inequality. The key point is the implementation of a refinement of the classical Pólya-Szegö inequality for the symmetric decreasing rearrangement which yields an optimal weighted Wirtinger inequality.
Classification : 35B05, 47J05, 26D15
Mots-clés : Poincare inequality, p-Laplacian eigenvalues, Neumann boundary conditions
@article{JCA_2013_20_1_JCA_2013_20_1_a15,
     author = {L. Esposito and C. Nitsch and C. Trombetti},
     title = {Best {Constants} in {Poincar\'e} {Inequalities} for {Convex} {Domains}},
     journal = {Journal of convex analysis},
     pages = {253--264},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2013},
     url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a15/}
}
TY  - JOUR
AU  - L. Esposito
AU  - C. Nitsch
AU  - C. Trombetti
TI  - Best Constants in Poincaré Inequalities for Convex Domains
JO  - Journal of convex analysis
PY  - 2013
SP  - 253
EP  - 264
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a15/
ID  - JCA_2013_20_1_JCA_2013_20_1_a15
ER  - 
%0 Journal Article
%A L. Esposito
%A C. Nitsch
%A C. Trombetti
%T Best Constants in Poincaré Inequalities for Convex Domains
%J Journal of convex analysis
%D 2013
%P 253-264
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a15/
%F JCA_2013_20_1_JCA_2013_20_1_a15
L. Esposito; C. Nitsch; C. Trombetti. Best Constants in Poincaré Inequalities for Convex Domains. Journal of convex analysis, Tome 20 (2013) no. 1, pp. 253-264. http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a15/