Best Constants in Poincaré Inequalities for Convex Domains
Journal of convex analysis, Tome 20 (2013) no. 1, pp. 253-264
Cet article a éte moissonné depuis la source Heldermann Verlag
We prove a Payne-Weinberger type inequality for the p-Laplacian Neumann eigenvalues (p ≥ 2). The inequality provides the sharp upper bound on convex domains, in terms of the diameter alone, of the best constant in Poincaré inequality. The key point is the implementation of a refinement of the classical Pólya-Szegö inequality for the symmetric decreasing rearrangement which yields an optimal weighted Wirtinger inequality.
Classification :
35B05, 47J05, 26D15
Mots-clés : Poincare inequality, p-Laplacian eigenvalues, Neumann boundary conditions
Mots-clés : Poincare inequality, p-Laplacian eigenvalues, Neumann boundary conditions
@article{JCA_2013_20_1_JCA_2013_20_1_a15,
author = {L. Esposito and C. Nitsch and C. Trombetti},
title = {Best {Constants} in {Poincar\'e} {Inequalities} for {Convex} {Domains}},
journal = {Journal of convex analysis},
pages = {253--264},
year = {2013},
volume = {20},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a15/}
}
TY - JOUR AU - L. Esposito AU - C. Nitsch AU - C. Trombetti TI - Best Constants in Poincaré Inequalities for Convex Domains JO - Journal of convex analysis PY - 2013 SP - 253 EP - 264 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a15/ ID - JCA_2013_20_1_JCA_2013_20_1_a15 ER -
L. Esposito; C. Nitsch; C. Trombetti. Best Constants in Poincaré Inequalities for Convex Domains. Journal of convex analysis, Tome 20 (2013) no. 1, pp. 253-264. http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a15/