Convex Conjugates of Analytic Functions of Logarithmically Convex Functionals
Journal of convex analysis, Tome 20 (2013) no. 1, pp. 243-252
Cet article a éte moissonné depuis la source Heldermann Verlag
Let $f_{\bf c}(r)=\sum_{n=0}^\infty e^{c_n}r^n$ be an analytic function; ${\bf c}=(c_n)\in l_\infty$. We assume that $r$ is some logarithmically convex and lower semicontinuous functional on a locally convex topological space $L$. In this paper we derive a formula on the Legendre-Fenchel transform of a functional $$ \widehat{\lambda}({\bf c},\varphi)= \ln f_{\bf c}(e^{\lambda(\varphi)})\ , $$ where $\lambda(\varphi)=\ln r(\varphi)$ ($\varphi\in L$). In this manner we generalize to the infinite case Theorem 3.1 of the paper of U. Ostaszewska and K. Zajkowski ["Legendre-Fenchel transform of the spectral exponent of polynomials of weighted composition operators", Positivity, DOI 10.1007/s11117-009-0023-6].
Classification :
44A15, 47A10, 47B37
Mots-clés : Legendre-Fenchel transform, logarithmic convexity, log-exponential function, entropy function, spectral radius, weighted composition operators
Mots-clés : Legendre-Fenchel transform, logarithmic convexity, log-exponential function, entropy function, spectral radius, weighted composition operators
@article{JCA_2013_20_1_JCA_2013_20_1_a14,
author = {K. Zajkowski},
title = {Convex {Conjugates} of {Analytic} {Functions} of {Logarithmically} {Convex} {Functionals}},
journal = {Journal of convex analysis},
pages = {243--252},
year = {2013},
volume = {20},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a14/}
}
K. Zajkowski. Convex Conjugates of Analytic Functions of Logarithmically Convex Functionals. Journal of convex analysis, Tome 20 (2013) no. 1, pp. 243-252. http://geodesic.mathdoc.fr/item/JCA_2013_20_1_JCA_2013_20_1_a14/