Semi-Infinite Programming: Strong Stability implies EMFCQ
Journal of convex analysis, Tome 19 (2012) no. 4, pp. 999-1008
Voir la notice de l'article provenant de la source Heldermann Verlag
We consider strongly stable stationary points of semi-infinite programming problems. The concept of strong stability was introduced by Kojima for finite programming problems and it refers to the local existence and uniqueness of a stationary point for each sufficiently small perturbed problem where perturbations up to second order are allowed. Under the extended Mangasarian-Fromovitz constraint qualification (EMFCQ) strong stability can be characterized algebraically by the first and second derivatives of the describing functions. In this paper we show that strong stability implies that EMFCQ holds at the stationary point under consideration.
Classification :
90C34, 90C31
Mots-clés : Semi-infinite programming, strongly stable stationary point, extended Mangasarian-Fromovitz constraint qualification
Mots-clés : Semi-infinite programming, strongly stable stationary point, extended Mangasarian-Fromovitz constraint qualification
@article{JCA_2012_19_4_JCA_2012_19_4_a5,
author = {D. Dorsch and H. G\"unzel and F. Guerra-V\'azquez and J.-J. R\"uckmann},
title = {Semi-Infinite {Programming:} {Strong} {Stability} implies {EMFCQ}},
journal = {Journal of convex analysis},
pages = {999--1008},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2012},
url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a5/}
}
TY - JOUR AU - D. Dorsch AU - H. Günzel AU - F. Guerra-Vázquez AU - J.-J. Rückmann TI - Semi-Infinite Programming: Strong Stability implies EMFCQ JO - Journal of convex analysis PY - 2012 SP - 999 EP - 1008 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a5/ ID - JCA_2012_19_4_JCA_2012_19_4_a5 ER -
%0 Journal Article %A D. Dorsch %A H. Günzel %A F. Guerra-Vázquez %A J.-J. Rückmann %T Semi-Infinite Programming: Strong Stability implies EMFCQ %J Journal of convex analysis %D 2012 %P 999-1008 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a5/ %F JCA_2012_19_4_JCA_2012_19_4_a5
D. Dorsch; H. Günzel; F. Guerra-Vázquez; J.-J. Rückmann. Semi-Infinite Programming: Strong Stability implies EMFCQ. Journal of convex analysis, Tome 19 (2012) no. 4, pp. 999-1008. http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a5/