Semi-Infinite Programming: Strong Stability implies EMFCQ
Journal of convex analysis, Tome 19 (2012) no. 4, pp. 999-1008.

Voir la notice de l'article provenant de la source Heldermann Verlag

We consider strongly stable stationary points of semi-infinite programming problems. The concept of strong stability was introduced by Kojima for finite programming problems and it refers to the local existence and uniqueness of a stationary point for each sufficiently small perturbed problem where perturbations up to second order are allowed. Under the extended Mangasarian-Fromovitz constraint qualification (EMFCQ) strong stability can be characterized algebraically by the first and second derivatives of the describing functions. In this paper we show that strong stability implies that EMFCQ holds at the stationary point under consideration.
Classification : 90C34, 90C31
Mots-clés : Semi-infinite programming, strongly stable stationary point, extended Mangasarian-Fromovitz constraint qualification
@article{JCA_2012_19_4_JCA_2012_19_4_a5,
     author = {D. Dorsch and H. G\"unzel and F. Guerra-V\'azquez and J.-J. R\"uckmann},
     title = {Semi-Infinite {Programming:} {Strong} {Stability} implies {EMFCQ}},
     journal = {Journal of convex analysis},
     pages = {999--1008},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a5/}
}
TY  - JOUR
AU  - D. Dorsch
AU  - H. Günzel
AU  - F. Guerra-Vázquez
AU  - J.-J. Rückmann
TI  - Semi-Infinite Programming: Strong Stability implies EMFCQ
JO  - Journal of convex analysis
PY  - 2012
SP  - 999
EP  - 1008
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a5/
ID  - JCA_2012_19_4_JCA_2012_19_4_a5
ER  - 
%0 Journal Article
%A D. Dorsch
%A H. Günzel
%A F. Guerra-Vázquez
%A J.-J. Rückmann
%T Semi-Infinite Programming: Strong Stability implies EMFCQ
%J Journal of convex analysis
%D 2012
%P 999-1008
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a5/
%F JCA_2012_19_4_JCA_2012_19_4_a5
D. Dorsch; H. Günzel; F. Guerra-Vázquez; J.-J. Rückmann. Semi-Infinite Programming: Strong Stability implies EMFCQ. Journal of convex analysis, Tome 19 (2012) no. 4, pp. 999-1008. http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a5/