Best Approximation Problems in Compactly Uniformly Rotund Spaces
Journal of convex analysis, Tome 19 (2012) no. 4, pp. 1153-1166
Voir la notice de l'article provenant de la source Heldermann Verlag
We investigate under what geometric conditions the best approximation problem to a nonempty closed subset of a real Banach space is generalized well-posed, or, more generally, the problem either has no solution or is generalized well-posed, for the majority of the points in the space. "Majority" is understood as a set whose complement in the space is σ-porous or σ-cone supported. Analogously to the case when uniqueness of the best approximation is considered, it turns out that certain local uniform, or uniform, properties of the norm of the underlying space have to be required.
Classification :
41A65, 46B20
Mots-clés : Best approximation, metric projection, well-posedness, approximative compactness, Baire category, porous sets, cone supported sets, compact uniform rotundity
Mots-clés : Best approximation, metric projection, well-posedness, approximative compactness, Baire category, porous sets, cone supported sets, compact uniform rotundity
@article{JCA_2012_19_4_JCA_2012_19_4_a14,
author = {J. P. Revalski and N. V. Zhivkov},
title = {Best {Approximation} {Problems} in {Compactly} {Uniformly} {Rotund} {Spaces}},
journal = {Journal of convex analysis},
pages = {1153--1166},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2012},
url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a14/}
}
TY - JOUR AU - J. P. Revalski AU - N. V. Zhivkov TI - Best Approximation Problems in Compactly Uniformly Rotund Spaces JO - Journal of convex analysis PY - 2012 SP - 1153 EP - 1166 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a14/ ID - JCA_2012_19_4_JCA_2012_19_4_a14 ER -
J. P. Revalski; N. V. Zhivkov. Best Approximation Problems in Compactly Uniformly Rotund Spaces. Journal of convex analysis, Tome 19 (2012) no. 4, pp. 1153-1166. http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a14/