Best Approximation Problems in Compactly Uniformly Rotund Spaces
Journal of convex analysis, Tome 19 (2012) no. 4, pp. 1153-1166.

Voir la notice de l'article provenant de la source Heldermann Verlag

We investigate under what geometric conditions the best approximation problem to a nonempty closed subset of a real Banach space is generalized well-posed, or, more generally, the problem either has no solution or is generalized well-posed, for the majority of the points in the space. "Majority" is understood as a set whose complement in the space is σ-porous or σ-cone supported. Analogously to the case when uniqueness of the best approximation is considered, it turns out that certain local uniform, or uniform, properties of the norm of the underlying space have to be required.
Classification : 41A65, 46B20
Mots-clés : Best approximation, metric projection, well-posedness, approximative compactness, Baire category, porous sets, cone supported sets, compact uniform rotundity
@article{JCA_2012_19_4_JCA_2012_19_4_a14,
     author = {J. P. Revalski and N. V. Zhivkov},
     title = {Best {Approximation} {Problems} in {Compactly} {Uniformly} {Rotund} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {1153--1166},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a14/}
}
TY  - JOUR
AU  - J. P. Revalski
AU  - N. V. Zhivkov
TI  - Best Approximation Problems in Compactly Uniformly Rotund Spaces
JO  - Journal of convex analysis
PY  - 2012
SP  - 1153
EP  - 1166
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a14/
ID  - JCA_2012_19_4_JCA_2012_19_4_a14
ER  - 
%0 Journal Article
%A J. P. Revalski
%A N. V. Zhivkov
%T Best Approximation Problems in Compactly Uniformly Rotund Spaces
%J Journal of convex analysis
%D 2012
%P 1153-1166
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a14/
%F JCA_2012_19_4_JCA_2012_19_4_a14
J. P. Revalski; N. V. Zhivkov. Best Approximation Problems in Compactly Uniformly Rotund Spaces. Journal of convex analysis, Tome 19 (2012) no. 4, pp. 1153-1166. http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a14/