Regularity Modulus of Intersection Mappings. Application to the Stability of Equations via Splitting into Inequalities
Journal of convex analysis, Tome 19 (2012) no. 4, pp. 913-926
Voir la notice de l'article provenant de la source Heldermann Verlag
This paper is firstly concerned with the modulus of metric regularity of intersection mappings. We consider a finite collection of set-valued mappings and analyze the relationship between the regularity moduli of these mappings (specifically, the maximum of them) and the regularity modulus of the associated intersection mapping. As an application we derive the Lipschitz modulus of the feasible set mapping associated with linear systems of (possibly) infinitely many linear inequalities and finitely many equations. Previously we characterize the metric regularity of such systems. Specifically, we consider an intersection mapping which obeys the strategy of splitting equations into inequalities, and then we apply preliminary results for inequality systems.
Classification :
65F22, 90C34, 90C05, 15A39, 49J53
Mots-clés : Metric regularity, linear systems, intersection mappings, linear regularity
Mots-clés : Metric regularity, linear systems, intersection mappings, linear regularity
@article{JCA_2012_19_4_JCA_2012_19_4_a1,
author = {M. J. C\'anovas and F. J. G\'omez-Senent and J. Parra},
title = {Regularity {Modulus} of {Intersection} {Mappings.} {Application} to the {Stability} of {Equations} via {Splitting} into {Inequalities}},
journal = {Journal of convex analysis},
pages = {913--926},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2012},
url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a1/}
}
TY - JOUR AU - M. J. Cánovas AU - F. J. Gómez-Senent AU - J. Parra TI - Regularity Modulus of Intersection Mappings. Application to the Stability of Equations via Splitting into Inequalities JO - Journal of convex analysis PY - 2012 SP - 913 EP - 926 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a1/ ID - JCA_2012_19_4_JCA_2012_19_4_a1 ER -
%0 Journal Article %A M. J. Cánovas %A F. J. Gómez-Senent %A J. Parra %T Regularity Modulus of Intersection Mappings. Application to the Stability of Equations via Splitting into Inequalities %J Journal of convex analysis %D 2012 %P 913-926 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a1/ %F JCA_2012_19_4_JCA_2012_19_4_a1
M. J. Cánovas; F. J. Gómez-Senent; J. Parra. Regularity Modulus of Intersection Mappings. Application to the Stability of Equations via Splitting into Inequalities. Journal of convex analysis, Tome 19 (2012) no. 4, pp. 913-926. http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a1/