Regularity Modulus of Intersection Mappings. Application to the Stability of Equations via Splitting into Inequalities
Journal of convex analysis, Tome 19 (2012) no. 4, pp. 913-926.

Voir la notice de l'article provenant de la source Heldermann Verlag

This paper is firstly concerned with the modulus of metric regularity of intersection mappings. We consider a finite collection of set-valued mappings and analyze the relationship between the regularity moduli of these mappings (specifically, the maximum of them) and the regularity modulus of the associated intersection mapping. As an application we derive the Lipschitz modulus of the feasible set mapping associated with linear systems of (possibly) infinitely many linear inequalities and finitely many equations. Previously we characterize the metric regularity of such systems. Specifically, we consider an intersection mapping which obeys the strategy of splitting equations into inequalities, and then we apply preliminary results for inequality systems.
Classification : 65F22, 90C34, 90C05, 15A39, 49J53
Mots-clés : Metric regularity, linear systems, intersection mappings, linear regularity
@article{JCA_2012_19_4_JCA_2012_19_4_a1,
     author = {M. J. C\'anovas and F. J. G\'omez-Senent and J. Parra},
     title = {Regularity {Modulus} of {Intersection} {Mappings.} {Application} to the {Stability} of {Equations} via {Splitting} into {Inequalities}},
     journal = {Journal of convex analysis},
     pages = {913--926},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a1/}
}
TY  - JOUR
AU  - M. J. Cánovas
AU  - F. J. Gómez-Senent
AU  - J. Parra
TI  - Regularity Modulus of Intersection Mappings. Application to the Stability of Equations via Splitting into Inequalities
JO  - Journal of convex analysis
PY  - 2012
SP  - 913
EP  - 926
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a1/
ID  - JCA_2012_19_4_JCA_2012_19_4_a1
ER  - 
%0 Journal Article
%A M. J. Cánovas
%A F. J. Gómez-Senent
%A J. Parra
%T Regularity Modulus of Intersection Mappings. Application to the Stability of Equations via Splitting into Inequalities
%J Journal of convex analysis
%D 2012
%P 913-926
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a1/
%F JCA_2012_19_4_JCA_2012_19_4_a1
M. J. Cánovas; F. J. Gómez-Senent; J. Parra. Regularity Modulus of Intersection Mappings. Application to the Stability of Equations via Splitting into Inequalities. Journal of convex analysis, Tome 19 (2012) no. 4, pp. 913-926. http://geodesic.mathdoc.fr/item/JCA_2012_19_4_JCA_2012_19_4_a1/