Existence Results for a Non Coercive Homogeneous Nonlinear Elliptic Equation
Journal of convex analysis, Tome 19 (2012) no. 3, pp. 795-813.

Voir la notice de l'article provenant de la source Heldermann Verlag

\newcommand{\R}{\mathbb{R}} Let $a:\R^n\to\R^n$ be monotonic, but unnecessarily strictly monotonic. We study the existence of Lipschitz or locally Lipschitz solutions to the equation div$\,a(\nabla u) = 0$ when the Lipschitz boundary datum fulfills some recent unilateral Bounded Slope Conditions.
Classification : 35J70, 35J15, 49K20
Mots-clés : Lipschitz, nonlinear, degenerate, elliptic, pde, convex
@article{JCA_2012_19_3_JCA_2012_19_3_a8,
     author = {C. Mariconda},
     title = {Existence {Results} for a {Non} {Coercive} {Homogeneous} {Nonlinear} {Elliptic} {Equation}},
     journal = {Journal of convex analysis},
     pages = {795--813},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a8/}
}
TY  - JOUR
AU  - C. Mariconda
TI  - Existence Results for a Non Coercive Homogeneous Nonlinear Elliptic Equation
JO  - Journal of convex analysis
PY  - 2012
SP  - 795
EP  - 813
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a8/
ID  - JCA_2012_19_3_JCA_2012_19_3_a8
ER  - 
%0 Journal Article
%A C. Mariconda
%T Existence Results for a Non Coercive Homogeneous Nonlinear Elliptic Equation
%J Journal of convex analysis
%D 2012
%P 795-813
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a8/
%F JCA_2012_19_3_JCA_2012_19_3_a8
C. Mariconda. Existence Results for a Non Coercive Homogeneous Nonlinear Elliptic Equation. Journal of convex analysis, Tome 19 (2012) no. 3, pp. 795-813. http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a8/