Relaxation and 3d-2d Passage Theorems in Hyperelasticity
Journal of convex analysis, Tome 19 (2012) no. 3, pp. 759-794.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give an overview of relaxation and 3d-2d passage theorems in hyperelasticity in the framework of the multidimensional calculus of variations. We give several improvements of the proofs and we introduce the concept of p-ample integrand in showing its interest with respect to determinant type constraints. Some open questions are addressed.
Mots-clés : Calculus of variations, integral representation, relaxation, 3d-2d passage, Gamma(pi)-convergence, determinant type constraints, hyperelasticity
@article{JCA_2012_19_3_JCA_2012_19_3_a7,
     author = {O. Anza Hafsa and J.-P. Mandallena},
     title = {Relaxation and 3d-2d {Passage} {Theorems} in {Hyperelasticity}},
     journal = {Journal of convex analysis},
     pages = {759--794},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a7/}
}
TY  - JOUR
AU  - O. Anza Hafsa
AU  - J.-P. Mandallena
TI  - Relaxation and 3d-2d Passage Theorems in Hyperelasticity
JO  - Journal of convex analysis
PY  - 2012
SP  - 759
EP  - 794
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a7/
ID  - JCA_2012_19_3_JCA_2012_19_3_a7
ER  - 
%0 Journal Article
%A O. Anza Hafsa
%A J.-P. Mandallena
%T Relaxation and 3d-2d Passage Theorems in Hyperelasticity
%J Journal of convex analysis
%D 2012
%P 759-794
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a7/
%F JCA_2012_19_3_JCA_2012_19_3_a7
O. Anza Hafsa; J.-P. Mandallena. Relaxation and 3d-2d Passage Theorems in Hyperelasticity. Journal of convex analysis, Tome 19 (2012) no. 3, pp. 759-794. http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a7/