Relaxation and 3d-2d Passage Theorems in Hyperelasticity
Journal of convex analysis, Tome 19 (2012) no. 3, pp. 759-794
Voir la notice de l'article provenant de la source Heldermann Verlag
We give an overview of relaxation and 3d-2d passage theorems in hyperelasticity in the framework of the multidimensional calculus of variations. We give several improvements of the proofs and we introduce the concept of p-ample integrand in showing its interest with respect to determinant type constraints. Some open questions are addressed.
Mots-clés :
Calculus of variations, integral representation, relaxation, 3d-2d passage, Gamma(pi)-convergence, determinant type constraints, hyperelasticity
@article{JCA_2012_19_3_JCA_2012_19_3_a7,
author = {O. Anza Hafsa and J.-P. Mandallena},
title = {Relaxation and 3d-2d {Passage} {Theorems} in {Hyperelasticity}},
journal = {Journal of convex analysis},
pages = {759--794},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {2012},
url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a7/}
}
TY - JOUR AU - O. Anza Hafsa AU - J.-P. Mandallena TI - Relaxation and 3d-2d Passage Theorems in Hyperelasticity JO - Journal of convex analysis PY - 2012 SP - 759 EP - 794 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a7/ ID - JCA_2012_19_3_JCA_2012_19_3_a7 ER -
O. Anza Hafsa; J.-P. Mandallena. Relaxation and 3d-2d Passage Theorems in Hyperelasticity. Journal of convex analysis, Tome 19 (2012) no. 3, pp. 759-794. http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a7/