M-Structures in Vector-Valued Polynomial Spaces
Journal of convex analysis, Tome 19 (2012) no. 3, pp. 685-711.

Voir la notice de l'article provenant de la source Heldermann Verlag

This paper is concerned with the study of $M$-structures in spaces of polynomials. More precisely, we discuss for $E$ and $F$ Banach spaces, whether the class of weakly continuous on bounded sets $n$-homogeneous polynomials, $\mathcal P_w(^n E, F)$, is an $M$-ideal in the space of continuous $n$-homogeneous polynomials $\mathcal P(^n E, F)$. We show that there is some hope for this to happen only for a finite range of values of $n$. We establish sufficient conditions under which the problem has positive and negative answers and use the obtained results to study the particular cases when $E=\ell_p$ and $F=\ell_q$ or $F$ is a Lorentz sequence space $d(w,q)$. We extend to our setting the notion of property $(M)$ introduced by Kalton which allows us to lift $M$-structures from the linear to the vector-valued polynomial context. Also, when $\mathcal P_w(^n E, F)$ is an $M$-ideal in $\mathcal P(^n E, F)$ we prove a Bishop-Phelps type result for vector-valued polynomials and relate norm-attaining polynomials with farthest points and remotal sets.
Classification : 47H60,46B04,47L22,46B20
Mots-clés : M-ideals, homogeneous polynomials, weakly continuous polynomials on bounded sets
@article{JCA_2012_19_3_JCA_2012_19_3_a4,
     author = {V. Dimant and S. Lassalle},
     title = {M-Structures in {Vector-Valued} {Polynomial} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {685--711},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a4/}
}
TY  - JOUR
AU  - V. Dimant
AU  - S. Lassalle
TI  - M-Structures in Vector-Valued Polynomial Spaces
JO  - Journal of convex analysis
PY  - 2012
SP  - 685
EP  - 711
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a4/
ID  - JCA_2012_19_3_JCA_2012_19_3_a4
ER  - 
%0 Journal Article
%A V. Dimant
%A S. Lassalle
%T M-Structures in Vector-Valued Polynomial Spaces
%J Journal of convex analysis
%D 2012
%P 685-711
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a4/
%F JCA_2012_19_3_JCA_2012_19_3_a4
V. Dimant; S. Lassalle. M-Structures in Vector-Valued Polynomial Spaces. Journal of convex analysis, Tome 19 (2012) no. 3, pp. 685-711. http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a4/