On Some Properties of Pettis Integrable Multifunctions
Journal of convex analysis, Tome 19 (2012) no. 3, pp. 671-683
Cet article a éte moissonné depuis la source Heldermann Verlag
We study Aumann-Pettis integrable multifunctions on 2X, where X is a separable Banach space and their integrals. We prove the existence of a weakly compact convex-valued Pettis integrable multifunction F for a closed, convex, decomposable and weakly sequentially compact subset K of P1(μ, X), the space of all Pettis integrable functions on X such that K coincides with SFP, the collection of all Pettis integrable selectors of F. We also study the weak compactness property of SFP.
Classification :
46G10, 46E30, 46P10, 28B20, 54C60
Mots-clés : Aumann-Pettis integrable multifunctions, Pettis integrable multifunctions, Aumann-Pettis integral, Pettis integral, weak convergence
Mots-clés : Aumann-Pettis integrable multifunctions, Pettis integrable multifunctions, Aumann-Pettis integral, Pettis integral, weak convergence
@article{JCA_2012_19_3_JCA_2012_19_3_a3,
author = {N. D. Chakraborty and T. Choudhury},
title = {On {Some} {Properties} of {Pettis} {Integrable} {Multifunctions}},
journal = {Journal of convex analysis},
pages = {671--683},
year = {2012},
volume = {19},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a3/}
}
N. D. Chakraborty; T. Choudhury. On Some Properties of Pettis Integrable Multifunctions. Journal of convex analysis, Tome 19 (2012) no. 3, pp. 671-683. http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a3/