On Some Properties of Pettis Integrable Multifunctions
Journal of convex analysis, Tome 19 (2012) no. 3, pp. 671-683.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study Aumann-Pettis integrable multifunctions on 2X, where X is a separable Banach space and their integrals. We prove the existence of a weakly compact convex-valued Pettis integrable multifunction F for a closed, convex, decomposable and weakly sequentially compact subset K of P1(μ, X), the space of all Pettis integrable functions on X such that K coincides with SFP, the collection of all Pettis integrable selectors of F. We also study the weak compactness property of SFP.
Classification : 46G10, 46E30, 46P10, 28B20, 54C60
Mots-clés : Aumann-Pettis integrable multifunctions, Pettis integrable multifunctions, Aumann-Pettis integral, Pettis integral, weak convergence
@article{JCA_2012_19_3_JCA_2012_19_3_a3,
     author = {N. D. Chakraborty and T. Choudhury},
     title = {On {Some} {Properties} of {Pettis} {Integrable} {Multifunctions}},
     journal = {Journal of convex analysis},
     pages = {671--683},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a3/}
}
TY  - JOUR
AU  - N. D. Chakraborty
AU  - T. Choudhury
TI  - On Some Properties of Pettis Integrable Multifunctions
JO  - Journal of convex analysis
PY  - 2012
SP  - 671
EP  - 683
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a3/
ID  - JCA_2012_19_3_JCA_2012_19_3_a3
ER  - 
%0 Journal Article
%A N. D. Chakraborty
%A T. Choudhury
%T On Some Properties of Pettis Integrable Multifunctions
%J Journal of convex analysis
%D 2012
%P 671-683
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a3/
%F JCA_2012_19_3_JCA_2012_19_3_a3
N. D. Chakraborty; T. Choudhury. On Some Properties of Pettis Integrable Multifunctions. Journal of convex analysis, Tome 19 (2012) no. 3, pp. 671-683. http://geodesic.mathdoc.fr/item/JCA_2012_19_3_JCA_2012_19_3_a3/