Applications of Convex Analysis to the Smallest Intersecting Ball Problem
Journal of convex analysis, Tome 19 (2012) no. 2, pp. 497-518
Cet article a éte moissonné depuis la source Heldermann Verlag
The smallest enclosing circle problem asks for the circle of smallest radius enclosing a given set of finite points on the plane. This problem was introduced in 1857 by J. J. Sylvester. After more than a century, the problem remains very active. This paper is the continuation of our effort in shedding new light to classical geometry problems using advanced tools of convex analysis and optimization. We propose and study the following generalized version of the smallest enclosing circle problem: given a finite number of nonempty closed convex sets in a reflexive Banach space, find a ball with the smallest radius that intersects all of the sets.
Classification :
49J52, 49J53, 90C31
Mots-clés : Convex analysis, convex optimization, generalized differentiation, smallest enclosing ball problem, smallest intersecting ball problem, subgradient-type algorithms
Mots-clés : Convex analysis, convex optimization, generalized differentiation, smallest enclosing ball problem, smallest intersecting ball problem, subgradient-type algorithms
@article{JCA_2012_19_2_JCA_2012_19_2_a9,
author = {N. M. Nam and T. A. Nguyen and J. Salinas},
title = {Applications of {Convex} {Analysis} to the {Smallest} {Intersecting} {Ball} {Problem}},
journal = {Journal of convex analysis},
pages = {497--518},
year = {2012},
volume = {19},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a9/}
}
TY - JOUR AU - N. M. Nam AU - T. A. Nguyen AU - J. Salinas TI - Applications of Convex Analysis to the Smallest Intersecting Ball Problem JO - Journal of convex analysis PY - 2012 SP - 497 EP - 518 VL - 19 IS - 2 UR - http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a9/ ID - JCA_2012_19_2_JCA_2012_19_2_a9 ER -
N. M. Nam; T. A. Nguyen; J. Salinas. Applications of Convex Analysis to the Smallest Intersecting Ball Problem. Journal of convex analysis, Tome 19 (2012) no. 2, pp. 497-518. http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a9/