Lexicographical Representation of Convex Sets
Journal of convex analysis, Tome 19 (2012) no. 2, pp. 485-496
Voir la notice de l'article provenant de la source Heldermann Verlag
We introduce two new families of properties on convex sets of Rn, in order to establish new theorems regarding open and closed separation of a convex set from any outside point by linear operators from Rn to Rm, in the sense of the lexicographical order of Rm, for each m = 1, 2, ... , n. We thus obtain lexicographical extensions of well known separation theorems for convex sets as well as characterizations of the solution sets of lexicographical (weak and strict) inequality systems defined by matrices of a given rank.
Classification :
52A20, 90C25
Mots-clés : Convex sets, open lexicographical separation, closed lexicographical separation
Mots-clés : Convex sets, open lexicographical separation, closed lexicographical separation
@article{JCA_2012_19_2_JCA_2012_19_2_a8,
author = {J. E. Mart{\'\i}nez-Legaz and J. Vicente-P\'erez},
title = {Lexicographical {Representation} of {Convex} {Sets}},
journal = {Journal of convex analysis},
pages = {485--496},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2012},
url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a8/}
}
TY - JOUR AU - J. E. Martínez-Legaz AU - J. Vicente-Pérez TI - Lexicographical Representation of Convex Sets JO - Journal of convex analysis PY - 2012 SP - 485 EP - 496 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a8/ ID - JCA_2012_19_2_JCA_2012_19_2_a8 ER -
J. E. Martínez-Legaz; J. Vicente-Pérez. Lexicographical Representation of Convex Sets. Journal of convex analysis, Tome 19 (2012) no. 2, pp. 485-496. http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a8/