On Linear Isometries on Non-Archimedean Power Series Spaces
Journal of convex analysis, Tome 19 (2012) no. 2, pp. 453-466.

Voir la notice de l'article provenant de la source Heldermann Verlag

The non-archimedean power series spaces Ap(a,t) are the most known and important examples of non-archimedean nuclear Fréchet spaces. We study when the spaces Ap(a,t) and Aq(b,s) are isometrically isomorphic. Next we determine all linear isometries on the space Ap(a,t) and show that all these maps are surjective.
Classification : 46S10, 47S10, 46A45
Mots-clés : Non-archimedean power series space, linear isometry, Schauder basis
@article{JCA_2012_19_2_JCA_2012_19_2_a6,
     author = {W. Sliwa and A. Ziemkowska},
     title = {On {Linear} {Isometries} on {Non-Archimedean} {Power} {Series} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {453--466},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a6/}
}
TY  - JOUR
AU  - W. Sliwa
AU  - A. Ziemkowska
TI  - On Linear Isometries on Non-Archimedean Power Series Spaces
JO  - Journal of convex analysis
PY  - 2012
SP  - 453
EP  - 466
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a6/
ID  - JCA_2012_19_2_JCA_2012_19_2_a6
ER  - 
%0 Journal Article
%A W. Sliwa
%A A. Ziemkowska
%T On Linear Isometries on Non-Archimedean Power Series Spaces
%J Journal of convex analysis
%D 2012
%P 453-466
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a6/
%F JCA_2012_19_2_JCA_2012_19_2_a6
W. Sliwa; A. Ziemkowska. On Linear Isometries on Non-Archimedean Power Series Spaces. Journal of convex analysis, Tome 19 (2012) no. 2, pp. 453-466. http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a6/