On Linear Isometries on Non-Archimedean Power Series Spaces
Journal of convex analysis, Tome 19 (2012) no. 2, pp. 453-466
The non-archimedean power series spaces Ap(a,t) are the most known and important examples of non-archimedean nuclear Fréchet spaces. We study when the spaces Ap(a,t) and Aq(b,s) are isometrically isomorphic. Next we determine all linear isometries on the space Ap(a,t) and show that all these maps are surjective.
Classification :
46S10, 47S10, 46A45
Mots-clés : Non-archimedean power series space, linear isometry, Schauder basis
Mots-clés : Non-archimedean power series space, linear isometry, Schauder basis
@article{JCA_2012_19_2_JCA_2012_19_2_a6,
author = {W. Sliwa and A. Ziemkowska},
title = {On {Linear} {Isometries} on {Non-Archimedean} {Power} {Series} {Spaces}},
journal = {Journal of convex analysis},
pages = {453--466},
year = {2012},
volume = {19},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a6/}
}
W. Sliwa; A. Ziemkowska. On Linear Isometries on Non-Archimedean Power Series Spaces. Journal of convex analysis, Tome 19 (2012) no. 2, pp. 453-466. http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a6/