On Linear Isometries on Non-Archimedean Power Series Spaces
Journal of convex analysis, Tome 19 (2012) no. 2, pp. 453-466
Voir la notice de l'article provenant de la source Heldermann Verlag
The non-archimedean power series spaces Ap(a,t) are the most known and important examples of non-archimedean nuclear Fréchet spaces. We study when the spaces Ap(a,t) and Aq(b,s) are isometrically isomorphic. Next we determine all linear isometries on the space Ap(a,t) and show that all these maps are surjective.
Classification :
46S10, 47S10, 46A45
Mots-clés : Non-archimedean power series space, linear isometry, Schauder basis
Mots-clés : Non-archimedean power series space, linear isometry, Schauder basis
@article{JCA_2012_19_2_JCA_2012_19_2_a6,
author = {W. Sliwa and A. Ziemkowska},
title = {On {Linear} {Isometries} on {Non-Archimedean} {Power} {Series} {Spaces}},
journal = {Journal of convex analysis},
pages = {453--466},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2012},
url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a6/}
}
TY - JOUR AU - W. Sliwa AU - A. Ziemkowska TI - On Linear Isometries on Non-Archimedean Power Series Spaces JO - Journal of convex analysis PY - 2012 SP - 453 EP - 466 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a6/ ID - JCA_2012_19_2_JCA_2012_19_2_a6 ER -
W. Sliwa; A. Ziemkowska. On Linear Isometries on Non-Archimedean Power Series Spaces. Journal of convex analysis, Tome 19 (2012) no. 2, pp. 453-466. http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a6/